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ABSTRACT
The Open Science Data Cloud is a distributed cloud based
infrastructure for managing, analyzing, archiving and shar-
ing scientific datasets. We introduce the Open Science Data
Cloud, give an overview of its architecture, provide an up-
date on its current status, and briefly describe some research
areas of relevance.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed architectures;
C.2.4 [Distributed Systems]: Distributed applications;
H.2.8 [Database Applications]: Scientific databases; H.3.4
[Systems and Software]: Distributed systems

General Terms
Design, Experimentation

Keywords
cloud computing, data clouds, management and analysis of
scientific data

1. INTRODUCTION
Many scientists today find it a challenge to manage and
analyze their data. There is a growing gap between the abil-
ity of modern scientific instruments to produce data and the
ability of scientists and most research groups to manage, an-
alyze, and share the data that is produced. Indeed, as the
size of datasets grows from MB to GB and TB, many scien-
tists are finding it difficult just to transport their data from
the instrument where it is produced to the facility where
it is analyzed, and from the facility where it is analyzed to
their collaborators around the world.

∗The authors are listed in alphabetical order. Robert Gross-
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This is an exciting time of change for infrastructure that sup-
ports data intensive science [6]. See Figure 2. First, there is
an increasing demand for more sophisticated data analyses
over datasets of ever increasing sizes. Second, the limitations
of the current databases and grids for data intensive science
are becoming painfully clear and new computational archi-
tectures are being developed [6], large data clouds [12, 13,
21, 20], pioneered by Google, GrayWulf clusters pioneered
by Szalay and Microsoft [28], and new database architec-
tures, such as SciDB being developed by Stonebraker et.
al. [30] and so-called No-SQL databases, such as Hive [32].
Third, there are new computing patterns being introduced,
including those for on-demand computing [2, 14], distributed
computing [25], and integrating computing with data mining
[5, 18].

As Figure 1 illustrates, it is helpful to think of data as com-
ing in three sizes: small datasets, medium to large datasets,
and very large datasets. By a small dataset, we mean a
dataset small enough that it is easy for an individual scien-
tist to manage with a single workstation. By a very large
dataset, we mean a dataset large enough that a specialized
data management infrastructure is required. A good ex-
ample is the LHC Computing Grid developed for the Large
Hadron Collider [23]. The challenge is that many medium to
large datasets are becoming more common and are to diffi-
cult for an individual researcher or research group to manage
themselves.

In this article, we introduce the Open Science Data Cloud
or OSDC. The OSDC was started in 2010 and is a persis-
tent, distributed storage and computing resource designed
to manage, analyze, share, and archive scientific data. It is
especially useful for medium to large datasets.

The OSDC is a hosted platform managed by a single entity
(the Open Cloud Consortium), not a federated or virtual
organization. Once data is accepted by the OSDC, the goal
of the OSDC is to manage and provide access to the data
from that time forward.

As we describe below in Section 3.2, our assumption is that if
the OSDC invests a constant dollar amount each year to buy
new equipment, then we can maintain all the old data and,
indeed, add new data, because the capacity of disk doubles
approximately every 18 months (or less). For example, if:
1) disk capacity improves by 50% each year, 2) 10 new racks
are added each year i that provide Di PB of storage, and 3)



10 old racks are retired with capacity Di−3 PB, then every
three years the additional capacity Di − Di−3 provided by
the 10 new racks is larger than the size of the entire OSDC
collection in year i− 3.

The Open Cloud Consortium is managed by a not-for-profit,
which has the goal of raising funding or acquiring donated
equipment so that this constant acquisition of new equip-
ment can be maintained and the integrity and access to data
can be provided over long periods, not just within the scope
of a project, which is often just 2-5 years.

Currently, storage for medium to large datasets for the OSDC
is provided by the Hadoop [21] or Sector [20] large data
clouds. The OSDC also supports elastic, on demand virtual
machines, similar to Amazon’s EC2 service [3]. In addition,
the applications we describe below integrate traditional re-
lational databases with these cloud services.

The different data centers in the OSDC are all connected by
10 Gbps networks. In addition the OSDC has a 10 Gbps link
to the StarLight facility in Chicago [29], which in turn con-
nects to the National Lambda Rail, Internet2, and a wide va-
riety of research networks. With these connections, medium
to large datasets can easily be ingested and shared. In ad-
dition, these connections are used so that medium and large
datasets can be replicated over multiple geographically dis-
tributed data centers.

The OSDC is different from existing cloud resources today:

• It is designed to provide long term persistent storage
for scientific data, even large scientific datasets.

• It can utilize high performance research networks, so
that medium to very large datasets can be easily in-
gested, accessed, and shared over wide areas.

• It is a balanced architecture that uses data locality to
support the efficient execution of queries and analysis
over the data managed by the cloud.

In this article, we introduce the Open Science Data Cloud,
give an overview of its architecture, provide an update on
its current status, and briefly describe some research areas
of relevance.

2. RESEARCH CHALLENGES
There are several challenges when working with large datasets:
managing the data, analyzing the data, archiving the data,
and transporting the data. As we will describe in the follow-
ing section, the approach of the OSDC is to use a specialized
large data cloud to handle these challenges. In this section,
we briefly introduce these challenges and provide some back-
ground on clouds.

Transporting large datasets. Although most universi-
ties today have access to wide area, high performance net-
works, most scientists do not. There are two main problems:
first, the laboratories of most scientists are not connected
to high performance networks, although their universities

are. Second, TCP as it is commonly deployed, does not use
the bandwidth available on high performance networks ef-
fectively when large datasets are transported over wide areas
[10].

Architectures that balance data management and
data analysis. Although databases are highly optimized
for managing and accessing indexed relational data, there
are not optimized for numerically intensive operations on
subsets of the data that comprise a significant portion of the
data under management. That is, as the numeric computa-
tions require touching more and more of the data, it is more
efficient to perform the computation outside of the database.
In contrast, systems such as Hadoop are designed to per-
form numerically intensive computations on large datasets,
especially computations that require scanning most of the
dataset. Hadoop accomplishes this by exploiting data local-
ity to colocate the computation over the data whenever pos-
sible. It is an important open research problem to develop
systems that can exploit data locality for a wider set of data
intensive applications than currently handled by Hadoop.

Archiving digital data. It is a difficult challenge to keep
digital data for long periods of time. Problems include: mov-
ing to new formats, migrating to new media, refreshing cur-
rent media, and losing the ability to meaningfully interpret
the data that is archived. For more information about some
of the problems, see [7].

Cloud Computing. Cloud computing does not have a
standard definition yet, but a commonly used one has been
developed by NIST [24] and defines cloud computing as “a
model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources that
can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.” For the pur-
poses here, we are interested in cloud computing platforms
that not only provide on demand computing instances but
also support data intensive computing, even over very large
datasets. From this point of view, we are interested in two
different but related architectures: the first type of clouds
provide on-demand infrastructure, such as on-demand com-
puting instances [4]; the second type of clouds provide scal-
able, on-demand services, such as storage or compute ser-
vices. Both use similar machines, but the first is designed
to scale out by providing additional computing instances,
whereas the second is designed to support data-intensive or
compute-intensive applications via scaling capacity.

Amazon’s EC2 computing instances [1] are an example of
the first type of cloud. The Eucalyptus system [33] is an
open source implementation that provides on-demand com-
puting instances and shares the same APIs as Amazon’s
EC2 cloud. Google’s Google File System, BigTable and
MapReduce infrastructure [12], [16] is an example of the
second type of cloud. The Hadoop file system (HDFS) and
Hadoop’s MapReduce implementation [8] is an open source
implementation of the Google cloud. A similar system is
Sector/Sphere, which consists of the Sector distributed file
system and Sphere computing service, which supports User
Defined Functions (UDFs) over the data managed by Sec-
tor [20]. The Google stack, Hadoop and Sector/Sphere all
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Figure 1: The Open Science Data Cloud is designed to be an infrastructure that can not only be used by
multiple scientific communities, but also allows federated queries, correlations, and other analyses that span
data sets from multiple scientific communities.

support data intensive computing by exploiting locality so
that, to the extent practical, computation is done in-place
over data managed by a scalable distributed file system. For
a good comparison between cloud computing and grid com-
puting, see [15].

3. ARCHITECTURE
3.1 Hardware Architecture
Based upon experimental studies that we have done over the
past year [17], the hardware for the OSDC consists of com-
modity computers, networked with commodity 1GE connec-
tions that are balanced so that there is one disk for each core.
To say it another way, we are currently balancing the sys-
tem by allocating one spindle per core. A system that was
more compute intensive would generally have more cores and
fewer spindles. A system that was used mainly for storage
would generally have fewer cores and more spindles. Notice
that this architecture that uses one spindle per core is dif-
ferent than the standard architecture for a database, which
usually consists of an upper end workstation connected to a
RAID or storage area network.

The current generation of racks that we are using for the
OSDC cost less than $90,000 each and consist of 32 nodes
containing 124 cores, 496 GB of RAM and 124 1-TB disks.
The rack consumes about 10.3 KW of power (excluding the
power required for cooling). We have been calling these
Raywulf Racks.

With 3x replication, there is about 40 TB of usable storage
available, which means that the cost to provide balanced
long term storage and compute power is about $2,000 per
TB. So, for example, a single rack could be used as a basis for

a private cloud that can manage and analyze approximately
40 TB of data.

Each rack is a standard 42U computer rack and consists
of a head node, 31 compute/storage nodes, a top of the
rack switch with two 10 Gbps uplinks that connect eventu-
ally to StarLight, and a separate switch for managing the
servers that connects to the commodity Internet. We in-
stalled GNU/Debian Linux 5.0 as the operating system. In
the racks that we are currently using, each compute/storage
node is an Intel Xeon 5410 Quad Core CPU with 16GB of
RAM, a SATA RAID controller, four (4) SATA 1TB hard
drives in RAID-0 configuration, and a 1 Gbps NIC. The top
of the rack switch is a Force10 S50N switch. Each rack also
contains a 3Com Baseline 2250 switch so that we can manage
the servers remotely over the commodity Internet using the
Intelligent Platform Management Interface (IPMI) interface
in each server.

We expect that the configuration of the racks will change
from year to year and that over time we will migrate to a
container-based instead of a rack-based infrastructure. For
example, the next racks we buy will use 2 TB disks, and, in
another year or two, we expect to use to 10 Gbps NIC.

3.2 Migration Architecture
In the initial phase of the OSDC, we plan on spending ap-
proximately an equal amount of capital each year to ac-
quire new racks and to retire racks after approximately three
years. With a plan like this, and assuming we start with 10
racks the growth of the OSDC can be seen in Table 1.

We anticipate that over time we may replace disk with solid



state media or whatever emerges as a replacement for disk.
We will use the ability of Hadoop and Sector (and whatever
emerges to replace them) to replicate automatically the data
so that there are always replicas available within the same
data center and in at least one other data center.

In more detail, each year we will invest in new equipment.
Let Ci be the amount of data (in PB) managed by the OSDC
in year i and Di the amount of new disk (in PB) that we
add each year. Then we assume that we will retire Di−3

disk each year. Our assumption is that

Di −Di−3 > Ci−3. (1)

Since Hadoop and Sector both replicate data automatically
when a rack is removed and when a new rack is added, the
data refresh problem is managed through the strategy of
adding sufficient new disk (or other appropriate media rec-
ognized by the software) so that Equation 1 holds.

Part of the Governance plan for the OSDC is to select new
data to add to the facility and to make sure that the amount
of data added each year is no greater than the net new ca-
pacity available each year.

3.3 Software Architecture
The OSDC software stack includes: the Hadoop [21] Dis-
tributed File System and Hadoop’s implementation of MapRe-
duce; and the Sector system [20] that provides a wide area
storage system and an implementation of both MapReduce
and cloud-wide User Defined Functions.

UDT [19] is used by Sector for communicating between the
nodes, both within and across the data centers. As is well
known [10], it can be challenging to transport large datasets
using TCP using high performance networks over wide areas.
UDT is a UDP-based protocol that implements reliability,
can effectively utilize the bandwidth available on wide area
high performance networks, is fair to multiple large data
flows, and is friendly to standard TCP traffic [19].

Both Hadoop and Sector exploit data locality to improve
the performance of data intensive computations. There are
some interesting differences between how Hadoop and Sector
support data locality. See Table 2. An important area of
research for the OSDC is to improve our understanding of
how to build scalable systems that support data locality for
a variety of different types of data intensive applications.

Unlike the majority of current cloud deployments, the OSDC
was created specifically to address the requirements of high
volume data flows, such as the large streams used by data
intensive science. Most clouds today were designed for mil-
lions of small data flows, each processing a small amount
of information, supported by commodity Internet technolo-
gies. Much science research requires the processing of ex-
tremely large amounts of data that cannot be supported
by generally implemented commodity networking technolo-
gies. Large scale data intensive science requires high perfor-
mance support for both extremely high capacity individual
data streams and for flexible interactive provisioning of such
streams. Consequently, a key objective of the OSDC design
was to create capabilities by using libraries like UDT that
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Figure 2: Data clouds are designed to provide long
term, persistent storage for data and to provide co-
located storage so that computation can be done
over the data in a balanced fashion that scales from
small data to large data. In contrast, grids and high
performance computers as usually designed do not
co-locate computing and storage. Instead, data is
shipped to high end computing resources, placed in
queue, and data is returned after the computation
completes.

not only provide support for large data flows but also can
be used with systems that dynamically provision networking
resources.

The OSDC also include the Eucalyptus system [33], which
provides elastic on-demand computing instances. The vir-
tual machine images that we use are compatible with the
Amazon public cloud, and so, if the data is small enough to
be transported to an Amazon storage service, then it is easy
to interoperate the OSDC private cloud with the Amazon
public cloud.

The OSDC also includes three databases (MySQL, Post-
greSQL and SQL Server) that are integrated with the cloud,
as well as a variety of open source software for scientific com-
puting, including R and Octave. In addition, the OSDC in-
cludes a GrayWulf style federated database as described in
[31].

4. OSDC APPLICATIONS
4.1 Cistrack
Cistrack is an OSDC application to manage and share cis-
regulatory data for the fly and worm produced by the NIH
modENCODE Project [9]. Much of the data is created
by next-generation sequencing machines that produce raw
datasets that are a TB or larger in size and intermediate
datasets that are 10 GB and larger in size. Cistrack already
has more than 2 TB of data in a MySQL database and over
20 TB of data in a Sector archive. We make this data avail-
able for bulk download via the OSDC.

In addition, the OSDC provides the ability to analyze the
data with user-supplied pipelines that are executed using
elastic on-demand virtual machines managed by Eucalyptus.



Year New Racks Total Racks New Cap. Total Cap. Net New Cap.
1 10 10 1.28 1.28 0
2 10 20 1.92 3.20 1.92
3 10 30 2.88 6.08 2.88
4 10 30 4.32 9.12 3.04
5 10 30 6.48 13.68 4.56
6 10 30 9.72 20.52 6.85

Table 1: This table shows the number of racks purchased each year, the total number of racks, the amount
of new storage purchased each year (in PB), and the net amount of new storage added each year (in PB).
We assume a constant investment each year in new racks and an improvement in disk performance each year
of 50%. We assume that after three years of use, we retire the racks.

MapReduce Sphere UDF
Storage Disk data Disk data and in-memory objects
Processing Map and Reduce; Reduce can only

exist after Map
Arbitrary user defined functions

Data exchange Reducers “pull” result from previous
mappers

UDFs “push” results to various
bucket files

Data locality Input data is assigned to the nearest
Mapper (input locality)

Input data is assigned to the the
nearest UDF (input locality). Out-
put data can be sent to specific loca-
tions to coordinate with other pro-
cessing (output locality).

Table 2: As the table shows, Hadoop’s implementation of MapReduce and Sphere’s implementation of user
defined functions (UDF) support data locality in different ways.

4.2 Access to Bulk Downloads of the SDSS
For the past several years, the Open Cloud Consortium has
provided infrastructure through Sector [20] so that the Sloan
Digital Sky Survey (SDSS) [11] data can be downloaded
in bulk. Currently, we make available SDSS data releases
DR3, DR4, DR5, DR6, and DR7 for bulk download. These
datasets are of sizes 2TB, 3TB, 4TB, 13TB, and 16TB, re-
spectively.

These bulk SDSS downloads will be moved to the OSDC.
In addition, we plan to make available some of the large
datasets that are expected to be produced by the Milky Way
Laboratory, which may be as large as 500 TB in size. The
Milky Way Laboratory datasets will be able to be analyzed
using the GrayWulf infrastructure [28].

We will be replicating the SDSS data in Hadoop, so that
MapReduce [13] computations can be performed over the
data within the OSDC. In addition, users can use the Sec-
tor/Sphere system [20] so that arbitrary User Defined Func-
tions (UDF) can be invoked over the SDSS data and Milky
Way Laboratory datasets.

5. ABOUT THE OCC
The Open Cloud Consortium (OCC) includes universities,
such as the University of Illinois at Chicago, Northwest-
ern University, the University of Chicago and Johns Hop-
kins University, companies, such as Yahoo! Inc. and Cisco,
and government agencies, such as NASA. The goals of the
OCC are: 1) to support the development of standards for
cloud computing and frameworks for interoperating between
clouds; 2) develop benchmarks for cloud computing; 3) sup-

port reference implementations for cloud computing, prefer-
ably open source reference implementations; 4) manage per-
sistent cloud computing infrastructure, such as the Open
Science Data Cloud; and 5) manage testbeds for cloud com-
puting, such as the Open Cloud Testbed [17]. More infor-
mation about the Open Cloud Consortium can be found on
its web site [26].

We are in the process of setting up an advisory board for
the OSDC, which among other responsibilities, will establish
policies for selecting datasets for the OSDC.

6. RELATED WORK
The OSDC is similar to the Open Science Grid (OSG), Ama-
zon’s public cloud, and the Internet Archive, but there are
also important differences. As we describe these differences
below, it is important to note that we are not making the
case that the OSDC is better than these competing infras-
tructures but instead that these infrastructures are different
and complementary.

The goal of the Open Science Grid software stack is “to
provide a uniform computing and storage interface across
many independently managed computing and storage clus-
ters. Scientists, researchers, and students, organized as vir-
tual organizations (VOs), are the consumers of the CPU cy-
cles and storage [27].” There are two important differences
between the Open Science Data Cloud (OSDC) and the
Open Science Grid (OSG). First, the OSDC uses a hosted
model in which one organization provides a managed re-
source to the community. In contrast, the OSG is model that
uses grid services to federate multiple virtual organizations



that are providing services. Second, the OSDC software
stack is based upon cloud services (Eucalyptus, Hadoop and
Sector), while the OSG software stack is based upon grid
services (such as GRAM, GridFTP and Condor-G). Third,
the goal of the OSDC is to support long term persistent ac-
cess to scientific data, while the goal of the OSG is “to pro-
mote discovery and collaboration in data-intensive research
by providing a computing facility and services that integrate
distributed, reliable and shared resources to support compu-
tation at all scales [27].”

Open Science
Data Cloud

Open Science
Grid

structure organization virtual organization
management hosted federated
key software Hadoop, Eucalyp-

tus, Sector
Globus, Condor

focus data intensive com-
puting

high performance
computing

goal OSDC will provide
a long term persis-
tent home for data
and a cloud based
infrastructure for
analyzing it

OSG will enable
VOs to use re-
sources of other
VOs

Although the Amazon public cloud includes support for Hadoop
[3], there are still several challenges when working with large
datasets using Amazon. First, for large datasets, the easiest
way to get data into and out of the Amazon cloud, is to
ship disks back and forth and to take advantage of a service
that Amazon offers that will import and export data from
these disks. Second, currently Amazon’s S3 services limit
the size of files to 5GB. Third, Amazon’s S3 service does
not currently support data locality. In contrast, the OSDC
has high performance network connections to most univer-
sities and specialized software (UDT) that can exploit such
networks. Second, there is no restriction within the OSDC
on the size of files and the OSDC architecture can take ad-
vantage of data locality.

The Internet Archive is a 501(c)(3) not-for-profit that is de-
signed to offer permanent access to researchers, historians,
scholars and the general public a wide variety of material
from the Internet, including documents, audio, and mov-
ing images [22]. In contrast, the OSDC is designed specifi-
cally to support scientific data, especially medium to large
size scientific data. It is also designed to support in-place
computing services over the data. Similar to the Internet
Archive, it is organized as not-for-profit and has a goal of
providing permanent storage for its digital assets.

7. STATUS
The Open Science Data Cloud is an outgrowth of the Open
Cloud Testbed, which is an Open Cloud Consortium testbed
for wide area large data clouds that can utilize 10 Gbps
networks to connect geographically distributed data centers
[17]. Both applications mentioned above in Section 4 cur-
rently use the Open Cloud Testbed.

We are currently in the process of installing 6 racks that
will be dedicated exclusively to the OSDC. Once these racks

are set up and available, the Open Cloud Testbed will be
operated as an experimental infrastructure for software de-
velopment, benchmarking and related activities, while the
Open Science Data Cloud will be a persistent production
resource for managing, analyzing, archiving and sharing sci-
entific data.

Two of these racks will be placed at the University of Illinois
at Chicago, two will be placed at Johns Hopkins University
(for the SDSS and related projects), one will be placed at
the University of Chicago/Argonne National Laboratory (for
Cistrack and related projects), and one will be placed in a
site that will be determined shortly. See Figure 3.

We have also begun a process to obtain stable longer term
funding for the OSDC, which is necessary for the migration
strategy described in Section 3.2 and so that the OSDC can
commit to hosting additional datasets.
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