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ABSTRACT 
A large amount of information on the Web is contained in 
regularly structured objects, which we call data records. Such 
data records are important because they often present the essential 
information of their host pages, e.g., lists of products or services. 
It is useful to mine such data records in order to extract 
information from them to provide value-added services. Existing 
automatic techniques are not satisfactory because of their poor 
accuracies. In this paper, we propose a more effective technique 
to perform the task. The technique is based on two observations 
about data records on the Web and a string matching algorithm. 
The proposed technique is able to mine both contiguous and non-
contiguous data records. Our experimental results show that the 
proposed technique outperforms existing techniques substantially.  

Categories and Subject Descriptors 
I.5 [Pattern Recognition]: statistical and structural  
H.2.8 [Database Applications]: data mining 

Keywords 
Web data records, Web mining, Web information integration 

1. INTRODUCTION 
A large amount of information on the Web is presented in 
regularly structured objects. A list of such objects in a Web page 
often describes a list of similar items, e.g., a list of products or 
services. In this paper, we call them data records. Mining data 
records is useful because it allows us to integrate information 
from multiple sources to provide value-added services. Figure 1 
gives an example, which is a segment of a Web page that lists two 
Apple notebooks. The full description of each notebook is a data 
record. The objective of this work is to automatically mine all the 
data records in a given Web page. 
Several semi-automatic and automatic approaches have been 
reported in the literature for mining data records (or their 
boundaries) from Web pages, e.g., [2][3][4][6][8][9][10][12]. 
[4][8][9][12] use the machine learning approach, which is semi-
automatic as it requires human labeling of specific regions in the 
Web page to mark them as interesting. [6] presents an automatic 
method that uses a set of heuristics and domain ontology to 
perform the task. [2] extends this approach by designing some 

additional heuristics without using any domain knowledge. We 
will show in the experiment section that the accuracy of this 
approach is poor. [3] proposes another automatic method, which 
uses Patricia tree [7] and approximate sequence alignment to find 
patterns (which represent a set of data records) in a Web page. 
Due to the inherent limitation of Patricia tree and inexact 
sequence matching, it often produces many patterns and most of 
them are spurious. Again, this method performs poorly. [10] 
proposes a clustering and grammar induction based method. 
However, the results are not very satisfactory [10].  

 
Figure 1. An example: two data records 

Apart from low accuracy, existing approaches also assume that 
relevant information of a data record is contained in a contiguous 
segment of the HTML code. This model is insufficient because in 
some Web pages, the description of one object (a data record) 
may intertwine with the descriptions of some other objects. For 
example, the descriptions of two objects in the HTML source may 
follow this sequence, part1 of object1, part1 of object2, part2 of 
object1, part2 of object2. Thus, the descriptions of both object1 
and object2 are not contiguous. However, when they are 
displayed on a Web browser, they appear contiguous to human 
viewers.  

In this paper, we propose a novel and more effective method to 
mine data records in a Web page automatically. The algorithm is 
called MDR (Mining Data Records in Web pages). It currently 
finds all data records formed by table and form related tags, i.e., 
table, form, tr, td, etc. A large majority of Web data records are 
formed by them. Our method is based on two observations:  
1. A group of data records that contains descriptions of a set of 

similar objects are typically presented in a particular region of 
a page and are formatted using similar HTML tags. Such a 
region is called a data region. For example, in Figure 1 two 
notebooks are given in one region. They are also formatted 
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using almost the same sequence of HTML tags. If we regard 
the HTML tags of a page as a string, we can use string 
matching to compare different sub-strings to find those similar 
ones, which may represent similar objects/data records.  

The problem with this approach is that the computation is 
prohibitive because a data record can start from anywhere and 
end anywhere. A set of data records typically do not have the 
same length in terms of their tag strings because they may not 
contain exactly the same pieces of information (see Figure 1). 

2. The nested structure of HTML tags in a Web page naturally 
forms a tag tree. Our second observation is that a group of 
similar data records being placed in a specific region is 
reflected in the tag tree by the fact that they are under one 
parent node, although we do not know which parent (our 
algorithm will find out). For example, the tag tree for the page 
in Figure 1 is given in Figure 2 (some details are omitted). 
Each notebook (a data record) in Figure 1 is wrapped in 5 TR 
nodes with their sub-trees under the same parent node 
TBODY (Figure 2). The two data records are in the two dash-
lined boxes. In other words, a set of similar data records are 
formed by some child sub-trees of the same parent node.  

A further note is that it is very unlikely that a data record 
starts inside of a child sub-tree and ends inside another child 
sub-tree. Instead, it starts from the beginning of a child sub-
tree and ends at the same or a later child sub-tree. For 
example, it is unlikely that a data record starts from TD* and 
ends at TD# (Figure 2). This observation makes it possible to 
design a very efficient algorithm to mine data records.  

 
Figure 2. Tag tree of the page in Figure 1 

Our experiments show that these observations are true. Note that 
we do not assume that a Web page has only one data region with 
data records. In fact, a Web page may contain a few data regions. 
Different regions may have different data records. Our method 
only requires that a data region to have two or more data records.   
Given a Web page, the proposed technique works in three steps: 

Step 1: Building a HTML tag tree of the page.  
Step 2: Mining data regions in the page using the tag tree and 

string comparison. Note that instead of mining data records 
directly, which is hard, our method mines data regions first and 
then find the data records within them. For example, in Figure 
2, we first find the single data region below node TBODY. 

Step 3: Identifying data records from each data region. For 
example, in Figure 2, this step finds data record 1 and data 
record 2 in the data region below node TBODY.  

2. THE PROPOSED TECHNIQUE  
We now present the three steps in the proposed method in turn.  

2.1 Building the HTML Tag Tree 
In this work, we only use tags in string comparison to find data 
records. Most HTML tags work in pairs. Each pair consists of an 
opening tag and a closing tag. Within each corresponding tag-
pair, there can be other pairs of tags, resulting in nested blocks of 
HTML codes. Building a tag tree from a Web page using its 
HTML code is thus natural. In our tag tree, each pair of tags is 
considered as one node. An example tag tree is shown in Figure 2.  

2.2 Mining Data Regions  
This step mines every data region in a Web page that contains 
similar data records. Instead of mining data records directly, 
which is hard, we first mine generalized nodes in a page. A 
sequence of adjacent generalized nodes forms a data region. From 
each data region, we will identify the actual data records.  
Definition: A generalized node (or a node combination) of length 

r consists of r (r ≥ 1) nodes in the HTML tag tree with the 
following two properties:  

     1)  the nodes all have the same parent. 
     2)  the nodes are adjacent. 
The reason that we introduce the generalized node is to capture 
the situation that an object (or a data record) may be contained in 
a few sibling tag nodes rather than one. For example, in Figures 1 
and 2, we can see that each notebook is contained in five table 
rows (or 5 TR nodes). Note that we call each node in the HTML 
tag tree a tag node to distinguish it from a generalized node.  

Definition: A data region is a collection of two or more 
generalized nodes with the following properties: 
1)  the generalized nodes all have the same parent. 
2)  the generalized nodes all have the same length. 
3)  the generalized nodes are all adjacent. 
4)  the normalized edit distance (string comparison) between 

adjacent generalized nodes is less than a fixed threshold. 

For example, in Figure 2, we can form two generalized nodes, the 
first one consists of the first 5 children TR nodes of TBODY, and 
the second one consists of the next 5 children TR nodes of 
TBODY. It is important to notice that although the generalized 
nodes in a data region have the same length (the same number of 
children nodes of a parent node in the tag tree), their lower level 
nodes in their sub-trees can be quite different. Thus, they can 
capture a wide variety of regularly structured objects. 

To further explain different kinds of generalized nodes and data 
regions, we make use of an artificial tag tree in Figure 3. For 
notational convenience, we do not use actual HTML tag names 
but ID numbers to denote tag nodes in a tag tree. The shaded 
areas are generalized nodes. Nodes 5 and 6 are generalized nodes 
of length 1 and they together define the data region labeled 1 if 
the edit distance condition 4) is satisfied. Nodes 8, 9 and 10 are 
also generalized nodes of length 1 and they together define the 
data region labeled 2 if the edit distance condition 4) is satisfied. 
The pairs of nodes (14, 15) and (16, 17) are generalized nodes of 
length 2. They together define the data region labeled 3 if the edit 
distance condition 4) is satisfied.  
We end this part with two important notes:  
1.  In practice, the above definitions are very robust as our 

experiments show. The key assumption here is that nodes 
forming a data region are from the same parent, which is 
reasonable. For example, it is unlikely that a data region starts 
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at node 7 and ends at node 14 (see also Figure 2).  
2. A generalized node may not represent a final data record (see 

Section 2.3). It will be used to find the final data records.  

 
Figure 3: An illustration of generalized nodes and data regions 

2.2.1 Comparing Generalized Nodes 
In order to find each data region in a Web page, the mining 
algorithm needs to find the following. (1) Where does the first 
generalized node of a data region start? For example, in Region 2 
of Figure 3, it starts at node 8. (2) How many tag nodes or 
components does a generalized node in each data region have? 
For example, in Region 2 of Figure 3, each generalized node has 
one tag node (or one component).  

Let the maximum number of tag nodes that a generalized node 
can have be K. To answer (1), we can try to find a data region 
starting from each node sequentially. To answer (2), we can try: 
one node, two node combination, �, K node combination. That 
is, we start from each node and perform all 1-node string 
comparisons, all 2-node string comparisons, and so on. We then 
use the comparison results to identify each data region.  
The number of comparisons is actually not very large because: 
• Due to our assumption, we only perform comparisons among 

the children nodes of a parent node.  
• Some comparisons done for earlier nodes are the same as for 

later nodes (see the example below).  
We use Figure 4 to illustrate the comparison process. Figure 4 has 
10 nodes, which are below a parent node, p. We start from each 
node and perform string comparison of all possible combinations 
of component nodes. Let the maximum number of components 
that a generalized node can have be 3 in this example.  

  
Figure 4: combination and comparison 

Start from node 1: We compute the following string comparisons.  
• (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10) 
• (1-2, 3-4), (3-4, 5-6), (5-6, 7-8), (7-8, 9-10) 
• (1-2-3, 4-5-6), (4-5-6, 7-8-9) 
(1, 2) means that the tag string of node 1 is compared with that 
of node 2. The tag string of a node includes all the tags of its 
sub-tree, e.g., in Figure 2, the tag string for the second TR node 
below TBODY is <TR TD TD � TD TD>, where ���denotes 
the sub-string of sub-tree below the second TD node. The tag 
string for the third TR node below TBODY is <TR TD TD>.  

(1-2, 3-4) means that the combined tag string of nodes 1 and 2 
is compared with the combined tag string of nodes 3 and 4.  

Start from node 2: We only compute: 
• (2-3, 4-5), (4-5, 6-7), (6-7, 8-9) 
• (2-3-4, 5-6-7), (5-6-7, 8-9-10)  
We do not need to do 1-node comparisons because they have 
been done when we started from node 1 above.  

Start from node 3: We only need to compute: 
• (3-4-5, 6-7-8) 
Here, we do not need to do 1-node and 2-node comparisons 
because they have been done when we started from node 1. 

The overall algorithm (MDR) for computing all the comparisons 
at each node of a tag tree is given in Figure 5. It traverses the tag 
tree from the root downward in a depth-first fashion (lines 3 and 
4). At each internal node, procedure CombComp (Figure 6) 
performs string comparisons of various combinations of the 
children sub-trees. Line 1 says that the algorithm will not search 
for data regions if the depth of the sub-tree from Node is 2 or 1 as 
it is unlikely that a data region is formed with only a single level 
of tag(s) (data regions are formed by the children of Node). 

 Algorithm MDR(Node, K)  
 1 if TreeDepth(Node) >= 3 then  
 2  CombComp(Node.Children, K); 
 3 for each ChildNode ∈ Node.Children  
 4 MDR(ChildNode, K);  

Figure 5: The overall algorithm 

The main idea of CombComp has been discussed above. Line 3 
checks whether there is at least one pair of combinations. If not, 
no comparison is needed. Lines 4-8 perform string comparisons of 
various combinations using the edit distance function EditDist.  

CombComp(NodeList, K) 
1 for (i = 1; i <= K; i++)  /* start from each node */ 
2 for (j = i; j <= K; j++)  /* comparing different combinations  
3  if NodeList[i+2*j-1] exists then 
4  St = i; 
5  for (k = i+j; k < Size(NodeList); k+j) 
6  if  NodeList[k+j-1] exists then 
7   EditDist(NodeList[St..(k-1)], NodeList[k..(k+j-1)]); 
8   St = k+j;  

Figure 6: The structure comparison algorithm 
Let N be the total number of nodes in the tag tree, the complexity 
of MDR is O(NK) without considering string comparison (see 
[11] for the detailed analysis).  

2.2.2 String Comparison Using Edit Distance 
The string comparison method that we use is based on the 
normalized edit distance [1][7]. Let the two strings be s1 and s2. 
The time-complexity of the algorithm is O(|s1||s2|) [1]. In our 
application, the computation can be substantially reduced as we 
are only interested in very similar strings. The computation is 
only large when the strings are long. If we want the strings to 
have the similarity of more than 50%, we can use the following 
method to reduce the computation: If |s1| > 2|s2| or |s2| > 2|s1|, no 
comparison is needed because they are obviously too dissimilar.  

2.2.3 Determining Data Regions 
We now identify each data region by finding its generalized 
nodes. We use Figure 7 to illustrate the issues. There are 8 data 
records (1-8) in this page. Our algorithm reports each row as a 
generalized node and the dash-lined box as a data region.  
The algorithm basically uses the string comparison results at each 
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parent node to find similar children node combinations to obtain 
candidate generalized nodes and data regions of the parent node. 
Three main issues are important for making the final decisions. 

 

 

 

 

 

 

 

 

 
 

Figure 7. A possible configuration of data records 
1. If a higher level data region covers a lower level data region, 

we report the higher level data region and its generalized 
nodes. Cover here means that a lower level data region is 
within a higher level data region. For example, in Figure 7, at 
a lower level we find that cells 1 and 2 are candidate 
generalized nodes and they together form a candidate data 
region, row 1. However, they are covered by the data region 
including all the 4 rows at a higher level. In this case, we only 
report each row is a generalized node.   

2. A property about similar strings is that if a set of strings s1, s2, 
s3, �., sn, are similar to one another, then a combination of 
any number of them is also similar to another combination of 
them of the same number. Thus, we only report generalized 
nodes of the smallest length that cover a data region. In Figure 
7, we only report each row as a generalized node rather than a 
combination of two rows (rows 1-2, and rows 3-4).  

3. An edit distance threshold is needed to decide whether two 
strings are similar. A set of training pages is used to decide it. 

The algorithm for this step is given in Figure 8. It finds every data 
region and its generalized nodes in a page. T is the edit distance 
threshold. Node is any node. K is the maximum number of tag 
nodes in a generalized node. Node.DRs is the set of data regions 
under Node, and tempDRs is a temporal variable storing the data 
regions passed up from every Child of Node. Line 1 is the same as 
line 1 in Figure 5. The idea of the algorithm is to traverse the tag 
tree top-down in a depth-first fashion. It performs one function at 
each node when it goes down (line 2), and performs another when 
it backs up before going down to another tree branch (line 6).  

1. When it goes down, at each node it identifies all the candidate 
data regions of the node using procedure IdentDRs (line 2).  

2. When it backs up, it checks to see whether the parent level 
data regions in Node.DRs cover the child level data regions. 
Those covered child level data regions are discarded. We take 
the parent level data regions as we believe they are more 
likely to be true data regions. Those uncovered data regions in 
Child.DRs are returned and stored in tempDRs (line 6). After 
all the children nodes of Node are processed, Node.DRs ∪ 
tempDRs gives the current data regions discovered from the 
sub-tree starting from Node (line 7).  

We now discuss procedure IdentDRs. Note that the previous step 
has computed the distance values of all possible child node 
combinations. This procedure uses these values and the threshold 

T to find data regions of Node. That is, it needs to decide which 
combinations represent generalized nodes, where the beginning is 
and where the end is for each data region.  

Algorithm FindDRs(Node, K, T) 
 1 if TreeDepth(Node) => 3 then 
 2  Node.DRs = IdenDRs(1, Node, K, T); 
 3 tempDRs = ∅;  
 4 for each Child ∈ Node.Children do 
 5 FindDRs(Child, K, T); 
 6 tempDRs = tempDRs∪UnCoveredDRs(Node, Child); 
 7 Node.DRs = Node.DRs  ∪ tempDRs 

Figure 8: Finding all data regions in the tag tree 

Procedure IdentDRs is given in Figure 9, which ensures the 
smallest generalized nodes are identified. The IdentDRs 
procedure is recursive (line 15). In each recursion, it extracts the 
next data region maxDR that covers the maximum number of 
children nodes. maxDR is described by three members (line 1), 
(1) the number of nodes in a combination, (2) the location of the 
start child node of the data region, and (3) the number of nodes 
involved in or covered by the data region. curDR is the current 
candidate data region being considered. String comparison results 
are stored in a data structure attached with each node. The value 
can be obtained by calling procedure Distance(Node, i, j) (which 
is just a table lookup, and is not listed here), where i represents i-
combination, and j represents the jth child of Node. IdentDRs 
basically checks each combination (line 2) and each starting point 
(line 3). For each possibility, it finds the first continuous region 
with a set of generalized nodes (lines 5-10). Lines 11-12 update 
the maximum data region maxDR. The conditions in line 11 
ensure that smaller generalized nodes are used unless the larger 
ones cover more nodes and starts no later than the smaller ones.  

Procedure IdentDRs(start, Node, K, T) 
1 maxDR = [0, 0, 0]; 
2 for (i = 1; i <= K; i++)  /* compute for each i-combination */ 
3  for (f = start; f <= i; f++)  /* start from each node */ 
4  flag = true; 
5  for (j = f; j < size(Node.Children); j+i) 
6  if Distance(Node, i, j) <= T then 
7  if flag=true then  curDR = [i, j, 2*i]; 
8  flag = false; 
9  else  curDR[3] = curDR[3] + i; 
10 elseif flag = false then Exit-inner-loop; 
11 if (maxDR[3] < curDR[3]) and  
 (maxDR[2] = 0 or (curDR[2]<= maxDR[2]) then  
12  maxDR = curDR; 
13 if ( maxDR[3] != 0 ) and  
14 ( maxDR[2]+maxDR[3]-1 != size(Node.Children)) then 
15 return  {maxDR}∪ 
 IdentDRs(maxDR[2]+maxDR[3], Node, K, T) 
16 return ∅;  

Figure 9. Identifying data regions below a node. 
Finally, procedure UnCoveredDRs is given in Figure 10. 
tempDiffDRs stores those data regions in Child.DRs that are not 
covered by any data regions of Node.  

 Procedure UnCoveredDRs(Node, Child) 
 1 tempDiffDRs = ∅;  
 2 for each data region DR in Child.DRs do 
 3 if DR not covered by any region in Node.DRs then 
 4 tempDiffDRs = tempDiffDRs ∪ {DR} 
 6 return tempDiffDRs  

Figure 10:  The UnCoveredDRs procedure 
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Assume that the total number of nodes in the tag tree is N, the 
complexity of FindDRs is O(NK2). Since K is normally very 
small. Thus, the computation requirement of the algorithm is low.  

2.3 Identify Data Records 
After all data regions and their generalized nodes are found from 
a page, we can identify data records in each region. As noted 
earlier, a generalized node may not be a data record containing a 
single object because procedure UnCoveredDR reports higher 
level data regions. The actual records may be at a lower level, i.e., 
a generalized node may contain one or more data records.  

Figure 11 shows a data region that contains two table rows (1 and 
2). Row 1 and row 2 have been identified as generalized nodes. 
However, they are not individual data records. Each row actually 
contains two data (objects) records in the two cells.  
 

 

 
Figure 11: Each row with more than one data record 

To find data records from each generalized node in a data region, 
the following constraint is useful: If a generalized node contains 
two or more data records, these data records must be similar in 
terms of their tag strings. This constraint is clear because we 
assume that a data region contains descriptions of similar objects.    
Identifying data records from each generalized node is relatively 
easy because they are nodes (together with their sub-trees) at the 
same level as the generalized node, or nodes at a lower level of 
the tag tree. Our experiments show that we only need to go down 
one level to check if data records are there. If not, the data records 
are at the same level as the generalized node. This is done based 
on the above constraint as all string comparisons have been done. 
This step, however, needs heuristic knowledge of how people 
present data objects (see [11] for details). Our method for finding 
non-contiguous object descriptions is also given in [11].  

3. EXPERIMENT RESULTS 
We evaluate our system (MDR) and compare it with two state-of-
the-art systems, OMINI [2], and IEPAD [3]. Both systems are 
publicly available (OMINI: http://disl.cc.gatech.edu/Omini/, IEPAD: 
http://140.115.155.99). The results are given in Table 1. Below, we 
first describe some experimental settings.  

Experiment Web pages: We use the whole set of 18 pages from 
OMINI�s homepage. Since most Web pages change frequently, 
three pages in OMINI did not contain any regularly data records 
when we performed our experiments. Thus, these 3 pages are not 
included. We also used a large number of other pages from a wide 
range of domains, books, travel, software, auctions, jobs, 
electronic products, shopping, and search engine results.  

Edit distance threshold: We used a number of training pages 
(not used in testing) in building our systems and in selecting the 
edit distance threshold, which is decided to be 0.3.  
Evaluation measures: We use the standard measures of precision 
and recall to evaluate the results from different systems.  
Experimental results: We now discuss the results in Table 1.  
Columns 1 and 2: Column 1 gives the id number of each 

experiment or Web page. The first 15 pages are from OMINI. 
Column 2 gives the URL of each page.  

Column 3: It gives the number of data records contained in each 

page. These are those obvious data records of the page. They 
do not include navigation areas, which can have patterns as 
well. Since OMINI tries to identify the main objects in the 
page, it does not give navigation areas or other smaller regions. 
However, both IEPAD and MDR are able to report such 
regions if they exist. Although it may be possible to remove 
them by using some heuristics, we choose to keep them 
because they may be useful to some users.  

Column 4: It shows the number of data records found by our 
system MDR. It gives perfect results for all pages except one, 
paper 44. For this page, MDR lost one data record.  

Columns 5, 6 and 7:  Column 5 shows the number of correct data 
records found by OMINI. Column 6 gives the total number of 
data records (which may not be correct) found by OMINI. 
Column 7 gives some remarks about the problems with OMINI.  

Columns 8, 9 and 10: They give the three corresponding results of 
IEPAD for each page. IEPAD often produces a large number of 
rules to extract information from data records. We tried every 
rule and present the best result in column 8 for each page.  

The last two rows of the table give the total number of data 
records in each column, the recall and the precision of each 
system. The precision and the recall are computed based on the 
total number of data records found in all pages by each system.  

Before further discussing the experimental results, we first 
explain the problem descriptions used in the table: 

all-in-n (m-in-n) with noise: It means that all (or m) data records 
are identified as n data records (m > n). �with noise� means that 
some items in the data records are not part of the data records.  

n-err.: It means that n (extra) incorrect data records are found. 
miss n objects: n correct data records are not identified.  
split into n: This means that correct data records are split into n 

smaller ones, i.e., a data record is not found as one but a few.  
none-found: None of the correct data records is found. 
all-miss-info (n-miss-info): This means that all (or n) data records 

found by the system with some parts missing.  
The following summarizes the experimental results in Table 1. 
1. Our system MDR is able to give perfect results for every page 

except for page 44. For this page, one data record is not found 
because it is too dissimilar to its neighbors. From the last two 
rows, we can see that MDR has a 99.8% recall and 100% 
precision. Both OMINI and IEPAD only have a recall of 39%. 

2. In columns 7 and 10, those cells that do not contain remarks 
show that the system finds all data records correctly. OMINI 
only gives perfect results for 6 pages out of 46, while IEPAD 
gives perfect results for only 14 pages. Our MDR system is 
able to give perfect results for all the pages except page 44.  

3. In column 7, we see that in 20 pages, many data records are 
identified together as one by OMINI and also include some 
noisy items. This clearly shows the serious weakness of 
OMINI�s tag based heuristic approach.  

4. Both OMINI and IEPAD are unable to find non-contiguous 
structures. Such cases occur in pages 1, 4 and 36.  

Execution time: On a Pentium 4 PC 1.4GHz and 512 MB RAM, 
the execution time for each page is always less than 0.5 second.  

4. CONCLUSION 
This paper proposed a novel and effective technique to mine data 
records in a Web page. The algorithm is also able to discover non-
contiguous data records, which cannot be handled by existing 
techniques. Experimental results show that the new method 
outperforms two existing state-of-the-art systems dramatically. 

Object 1 Object 2 

Object 3 Object 4 

row 1 

row 2 



5. REFERENCES 
[1] Baeza-Yates, R. �Algorithms for string matching: A survey.� 

ACM SIGIR Forum, 23(3-4):34--58, 1989  
[2] Buttler, D., Liu, L., Pu, C. "A fully automated extraction 

system for the World Wide Web." IEEE ICDCS-21, 2001. 
[3] Chang, C-H., Lui, S-L. �IEPAD: Information extraction 

based on pattern discovery.� WWW-10, 2001. 
[4] Cohen, W., Hurst, M., and Jensen, L. �A flexible learning 

system for wrapping tables and lists in HTML documents.� 
WWW-2002, 2002. 

[5] Doorenbos, R., Etzioni, O., Weld, D. �A scalable comparison 
shopping agent for the World Wide Web.� Agents-97, 1997. 

[6] Embley, D., Jiang, Y and Ng, Y. �Record-boundary 

discovery in Web documents.� SIGMOD-99, 1999.  
[7] Gusfield, D. Algorithms on strings, tree, and sequence. 1997. 
[8] Hsu, C.-N., and Dung, M.-T. �Generating finite-state 

transducers for semi-structured data extraction from the 
Web.� Information Systems. 23(8): 521-538, 1998. 

[9] Kushmerick, N. �Wrapper induction: efficiency and 
expressiveness.� Artificial Intelligence, 118:15-68, 2000.  

[10] Lerman, K. Knoblock, C., and Minton, S. �Automatic data 
extraction from lists and tables in web sources.� IJCAI-01 
Workshop on Adaptive Text Extraction and Mining, 2001. 

[11] Liu, B., Grossman, R. and Zhai, Y. �Mining data records in 
Web pages.� UIC Technical Report, 2003.  

[12] Muslea, I., Minton, S. and Knoblock, C. �A hierarchical 
approach to wrapper induction.� Agents-99, 1999.  

OMINI IEPAD   
URL 

 
Obj. 

 
MDR corr. found remark corr. found remark 

1 http://www.bookbuyer.com 4 4 2 4 all-miss-info 4 5 all-miss-info 
2 http://www.powells.com 4 4 4 5 1 err. 0 0 none-found 
3 http://www.barnesandnoble.com 4 4 0 5 all-in-1 with noise 0 7 none-found 
4 http://www.codysbooks.com 6 6 0 3 all-in-1 with noise 6 7 all-miss-info 
5 http://www.bookpool.com 25 25 25 26 1 err. 0 12 none-found 
6 http://www.borders.com 25 25 25 25  14 14 miss 9 objects 
7 http://www.alphabetstreet.infront.co.uk 10 10 0 8 none-found 10 10  
8 http://www.ebay.com 7 7 0 1 all-in-1 with noise 7 7  
9 http://auctions.yahoo.com 6 6 0 3 all-in-1 with noise 6 7 1 err, all-miss-info 

10 http://www.drugstore.com 8 8 0 0 none-found 7 7 miss 1 object 
11 http://www.epicurious.com 3 3 0 0 none-found 0 12 none-found 
12 http://www.mymenus.com 6 6 0 2 none-found 0 6 none-found 
13 http://www.cooking.com 11 11 0 3 none-found 9 14 2 split into 5 
14 http://www.eve.com/ 9 9 0 2 all-in-1 with noise 9 9  
15 http://www.etoys.com 5 5 4 4 miss 1 object 5 5 all-miss-info 
16 http://www.tourvacationstogo.com  70 70 70 70  0 5 none-found 
17 http://www.tourturkey.com 6 6 5 6 1 err. 0 0 none-found 
18 http://www.asiatravel.com 18 18 0 4 all-in-1 with noise 15 15 all-miss-info 
19 http://www.mapquest.com 2 2 0 4 all-in-1 with noise 0 5 none-found 
20 http://www.travelocity.com 5 5 0 7 all-in-1 with noise 5 5  
21 http://www.ubid.com 22 22 0 2 all-in-1 with noise 13 27 extra 14 wrong 
22 http://www.grijns.net/ 62 62 0 14 all-in-12 with noise 5 5 miss 57 object 
23 http://journeys.20m.com 8 8 3 5 miss 5 objects 8 10 extra 2 wrong 
24 http://www.softwareoutlet.com 9 9 0 3 all-in-1 with noise 8 9 extra 1 wrong 
25 http://qualityinks.com/index.php 66 66 0 22 all-in-22 with noise 0 0 none-found 
26 http://www.nothingbutsoftware.com 17 17 14 17 3-in-1 with noise 14 14  
27 http://www.newegg.com 12 12 0 5 6-in-3 with noise 6 6  
28 http://chemstore.cambridgesoft.com 5 5 5 5  5 5  
29 http://www.godaddy.com 4 4 0 2 all-in-1 with noise 4 11 7 err, all-miss-info 
30 http://www.compusa.com 8 8 0 3 all-in-1 with noise 8 8  
31 http://www.radioshack.com 9 9 3 4 miss 6 objects 9 9  
32 http://www.earlemu.com 4 4 4 5  0 0 none-found 
33 http://www.kadybooks.com 20 20 0 50 split into 50 10 10  
34 http://www.kidsfootlocker.com 9 9 0 1 all-in-1 with noise 9 9 2-miss-info 
35 http://shop.lycos.com 13 13 0 2 all-in-1 with noise 5 5  
36 http://thenew.hp.com 4 4 0 5 all-in-1 with noise 0 10 split into 10 
37 http://www.dell.com 5 5 5 5  5 5  
38 http://www.circuitcity.com 4 4 0 0 none-found 0 6 none-found 
39 http://www.overstock.com 3 3 3 3  0 8 split into 8 
40 http://www.kodak.com 3 3 0 6 none-found 0 6 none-found 
41 http://www.flipdog.com 25 25 25 28 3 err. 0 0 none-found 
42 http://www.summerjobs.com 20 20 0 3 none-found 0 7 none-found 
43 http://search.lycos.com 10 10 0 8 all-in-2 with noise 10 10  
44 http://www.northernlight.com 10 9 10 11 1 err. 10 10 all-miss-info 
45 http://www.coolhits.com 20 20 20 21 1 err. 0 0 none-found 
46 http://www.mamma.com 15 15 15 20 5 err. 15 15  
 Total 621 620  242 432  241 357  
 Recall / Precision  99.8% / 100% 39% / 56%   39% / 67%  

Table 1: Experimental results 


