
Mining Data Records in Web Pages
Bing Liu

Department of Computer Science
University of Illinois at Chicago

851 S. Morgan Street
Chicago, IL 60607-7053

liub@cs.uic.edu

Robert Grossman
Dept. of Mathematics, Statistics, and

Computer Science
University of Illinois at Chicago
851 S. Morgan Street, IL 60607

grossman@uic.edu

Yanhong Zhai
Department of Computer Science

University of Illinois at Chicago
851 S. Morgan Street

Chicago, IL 60607-7053

yzhai@cs.uic.edu

ABSTRACT
A large amount of information on the Web is contained in
regularly structured objects, which we call data records. Such
data records are important because they often present the essential
information of their host pages, e.g., lists of products or services.
It is useful to mine such data records in order to extract
information from them to provide value-added services. Existing
automatic techniques are not satisfactory because of their poor
accuracies. In this paper, we propose a more effective technique
to perform the task. The technique is based on two observations
about data records on the Web and a string matching algorithm.
The proposed technique is able to mine both contiguous and non-
contiguous data records. Our experimental results show that the
proposed technique outperforms existing techniques substantially.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: statistical and structural
H.2.8 [Database Applications]: data mining

Keywords
Web data records, Web mining, Web information integration

1. INTRODUCTION
A large amount of information on the Web is presented in
regularly structured objects. A list of such objects in a Web page
often describes a list of similar items, e.g., a list of products or
services. In this paper, we call them data records. Mining data
records is useful because it allows us to integrate information
from multiple sources to provide value-added services. Figure 1
gives an example, which is a segment of a Web page that lists two
Apple notebooks. The full description of each notebook is a data
record. The objective of this work is to automatically mine all the
data records in a given Web page.
Several semi-automatic and automatic approaches have been
reported in the literature for mining data records (or their
boundaries) from Web pages, e.g., [2][3][4][6][8][9][10][12].
[4][8][9][12] use the machine learning approach, which is semi-
automatic as it requires human labeling of specific regions in the
Web page to mark them as interesting. [6] presents an automatic
method that uses a set of heuristics and domain ontology to
perform the task. [2] extends this approach by designing some

additional heuristics without using any domain knowledge. We
will show in the experiment section that the accuracy of this
approach is poor. [3] proposes another automatic method, which
uses Patricia tree [7] and approximate sequence alignment to find
patterns (which represent a set of data records) in a Web page.
Due to the inherent limitation of Patricia tree and inexact
sequence matching, it often produces many patterns and most of
them are spurious. Again, this method performs poorly. [10]
proposes a clustering and grammar induction based method.
However, the results are not very satisfactory [10].

Figure 1. An example: two data records

Apart from low accuracy, existing approaches also assume that
relevant information of a data record is contained in a contiguous
segment of the HTML code. This model is insufficient because in
some Web pages, the description of one object (a data record)
may intertwine with the descriptions of some other objects. For
example, the descriptions of two objects in the HTML source may
follow this sequence, part1 of object1, part1 of object2, part2 of
object1, part2 of object2. Thus, the descriptions of both object1
and object2 are not contiguous. However, when they are
displayed on a Web browser, they appear contiguous to human
viewers.

In this paper, we propose a novel and more effective method to
mine data records in a Web page automatically. The algorithm is
called MDR (Mining Data Records in Web pages). It currently
finds all data records formed by table and form related tags, i.e.,
table, form, tr, td, etc. A large majority of Web data records are
formed by them. Our method is based on two observations:
1. A group of data records that contains descriptions of a set of

similar objects are typically presented in a particular region of
a page and are formatted using similar HTML tags. Such a
region is called a data region. For example, in Figure 1 two
notebooks are given in one region. They are also formatted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD �03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008�$5.00.

using almost the same sequence of HTML tags. If we regard
the HTML tags of a page as a string, we can use string
matching to compare different sub-strings to find those similar
ones, which may represent similar objects/data records.

The problem with this approach is that the computation is
prohibitive because a data record can start from anywhere and
end anywhere. A set of data records typically do not have the
same length in terms of their tag strings because they may not
contain exactly the same pieces of information (see Figure 1).

2. The nested structure of HTML tags in a Web page naturally
forms a tag tree. Our second observation is that a group of
similar data records being placed in a specific region is
reflected in the tag tree by the fact that they are under one
parent node, although we do not know which parent (our
algorithm will find out). For example, the tag tree for the page
in Figure 1 is given in Figure 2 (some details are omitted).
Each notebook (a data record) in Figure 1 is wrapped in 5 TR
nodes with their sub-trees under the same parent node
TBODY (Figure 2). The two data records are in the two dash-
lined boxes. In other words, a set of similar data records are
formed by some child sub-trees of the same parent node.

A further note is that it is very unlikely that a data record
starts inside of a child sub-tree and ends inside another child
sub-tree. Instead, it starts from the beginning of a child sub-
tree and ends at the same or a later child sub-tree. For
example, it is unlikely that a data record starts from TD* and
ends at TD# (Figure 2). This observation makes it possible to
design a very efficient algorithm to mine data records.

Figure 2. Tag tree of the page in Figure 1

Our experiments show that these observations are true. Note that
we do not assume that a Web page has only one data region with
data records. In fact, a Web page may contain a few data regions.
Different regions may have different data records. Our method
only requires that a data region to have two or more data records.
Given a Web page, the proposed technique works in three steps:

Step 1: Building a HTML tag tree of the page.
Step 2: Mining data regions in the page using the tag tree and

string comparison. Note that instead of mining data records
directly, which is hard, our method mines data regions first and
then find the data records within them. For example, in Figure
2, we first find the single data region below node TBODY.

Step 3: Identifying data records from each data region. For
example, in Figure 2, this step finds data record 1 and data
record 2 in the data region below node TBODY.

2. THE PROPOSED TECHNIQUE
We now present the three steps in the proposed method in turn.

2.1 Building the HTML Tag Tree
In this work, we only use tags in string comparison to find data
records. Most HTML tags work in pairs. Each pair consists of an
opening tag and a closing tag. Within each corresponding tag-
pair, there can be other pairs of tags, resulting in nested blocks of
HTML codes. Building a tag tree from a Web page using its
HTML code is thus natural. In our tag tree, each pair of tags is
considered as one node. An example tag tree is shown in Figure 2.

2.2 Mining Data Regions
This step mines every data region in a Web page that contains
similar data records. Instead of mining data records directly,
which is hard, we first mine generalized nodes in a page. A
sequence of adjacent generalized nodes forms a data region. From
each data region, we will identify the actual data records.
Definition: A generalized node (or a node combination) of length

r consists of r (r ≥ 1) nodes in the HTML tag tree with the
following two properties:

 1) the nodes all have the same parent.
 2) the nodes are adjacent.
The reason that we introduce the generalized node is to capture
the situation that an object (or a data record) may be contained in
a few sibling tag nodes rather than one. For example, in Figures 1
and 2, we can see that each notebook is contained in five table
rows (or 5 TR nodes). Note that we call each node in the HTML
tag tree a tag node to distinguish it from a generalized node.

Definition: A data region is a collection of two or more
generalized nodes with the following properties:
1) the generalized nodes all have the same parent.
2) the generalized nodes all have the same length.
3) the generalized nodes are all adjacent.
4) the normalized edit distance (string comparison) between

adjacent generalized nodes is less than a fixed threshold.

For example, in Figure 2, we can form two generalized nodes, the
first one consists of the first 5 children TR nodes of TBODY, and
the second one consists of the next 5 children TR nodes of
TBODY. It is important to notice that although the generalized
nodes in a data region have the same length (the same number of
children nodes of a parent node in the tag tree), their lower level
nodes in their sub-trees can be quite different. Thus, they can
capture a wide variety of regularly structured objects.

To further explain different kinds of generalized nodes and data
regions, we make use of an artificial tag tree in Figure 3. For
notational convenience, we do not use actual HTML tag names
but ID numbers to denote tag nodes in a tag tree. The shaded
areas are generalized nodes. Nodes 5 and 6 are generalized nodes
of length 1 and they together define the data region labeled 1 if
the edit distance condition 4) is satisfied. Nodes 8, 9 and 10 are
also generalized nodes of length 1 and they together define the
data region labeled 2 if the edit distance condition 4) is satisfied.
The pairs of nodes (14, 15) and (16, 17) are generalized nodes of
length 2. They together define the data region labeled 3 if the edit
distance condition 4) is satisfied.
We end this part with two important notes:
1. In practice, the above definitions are very robust as our

experiments show. The key assumption here is that nodes
forming a data region are from the same parent, which is
reasonable. For example, it is unlikely that a data region starts

TABLE

TBODY

HTML

HEAD
BODY

TR
 |
TD

TD TD TD TD

TR TR
 |
TD

TR TR TR
|

 TD

TR
 |
TD

TR
 |
TD

TR
 |
TD

TABLE P

TR

TD* TD TD TD

TD TD TD# TD data
record 1

data
record 2

at node 7 and ends at node 14 (see also Figure 2).
2. A generalized node may not represent a final data record (see

Section 2.3). It will be used to find the final data records.

Figure 3: An illustration of generalized nodes and data regions

2.2.1 Comparing Generalized Nodes
In order to find each data region in a Web page, the mining
algorithm needs to find the following. (1) Where does the first
generalized node of a data region start? For example, in Region 2
of Figure 3, it starts at node 8. (2) How many tag nodes or
components does a generalized node in each data region have?
For example, in Region 2 of Figure 3, each generalized node has
one tag node (or one component).

Let the maximum number of tag nodes that a generalized node
can have be K. To answer (1), we can try to find a data region
starting from each node sequentially. To answer (2), we can try:
one node, two node combination, �, K node combination. That
is, we start from each node and perform all 1-node string
comparisons, all 2-node string comparisons, and so on. We then
use the comparison results to identify each data region.
The number of comparisons is actually not very large because:
• Due to our assumption, we only perform comparisons among

the children nodes of a parent node.
• Some comparisons done for earlier nodes are the same as for

later nodes (see the example below).
We use Figure 4 to illustrate the comparison process. Figure 4 has
10 nodes, which are below a parent node, p. We start from each
node and perform string comparison of all possible combinations
of component nodes. Let the maximum number of components
that a generalized node can have be 3 in this example.

Figure 4: combination and comparison

Start from node 1: We compute the following string comparisons.
• (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)
• (1-2, 3-4), (3-4, 5-6), (5-6, 7-8), (7-8, 9-10)
• (1-2-3, 4-5-6), (4-5-6, 7-8-9)
(1, 2) means that the tag string of node 1 is compared with that
of node 2. The tag string of a node includes all the tags of its
sub-tree, e.g., in Figure 2, the tag string for the second TR node
below TBODY is <TR TD TD � TD TD>, where ���denotes
the sub-string of sub-tree below the second TD node. The tag
string for the third TR node below TBODY is <TR TD TD>.

(1-2, 3-4) means that the combined tag string of nodes 1 and 2
is compared with the combined tag string of nodes 3 and 4.

Start from node 2: We only compute:
• (2-3, 4-5), (4-5, 6-7), (6-7, 8-9)
• (2-3-4, 5-6-7), (5-6-7, 8-9-10)
We do not need to do 1-node comparisons because they have
been done when we started from node 1 above.

Start from node 3: We only need to compute:
• (3-4-5, 6-7-8)
Here, we do not need to do 1-node and 2-node comparisons
because they have been done when we started from node 1.

The overall algorithm (MDR) for computing all the comparisons
at each node of a tag tree is given in Figure 5. It traverses the tag
tree from the root downward in a depth-first fashion (lines 3 and
4). At each internal node, procedure CombComp (Figure 6)
performs string comparisons of various combinations of the
children sub-trees. Line 1 says that the algorithm will not search
for data regions if the depth of the sub-tree from Node is 2 or 1 as
it is unlikely that a data region is formed with only a single level
of tag(s) (data regions are formed by the children of Node).

 Algorithm MDR(Node, K)
 1 if TreeDepth(Node) >= 3 then
 2 CombComp(Node.Children, K);
 3 for each ChildNode ∈ Node.Children
 4 MDR(ChildNode, K);

Figure 5: The overall algorithm

The main idea of CombComp has been discussed above. Line 3
checks whether there is at least one pair of combinations. If not,
no comparison is needed. Lines 4-8 perform string comparisons of
various combinations using the edit distance function EditDist.

CombComp(NodeList, K)
1 for (i = 1; i <= K; i++) /* start from each node */
2 for (j = i; j <= K; j++) /* comparing different combinations
3 if NodeList[i+2*j-1] exists then
4 St = i;
5 for (k = i+j; k < Size(NodeList); k+j)
6 if NodeList[k+j-1] exists then
7 EditDist(NodeList[St..(k-1)], NodeList[k..(k+j-1)]);
8 St = k+j;

Figure 6: The structure comparison algorithm
Let N be the total number of nodes in the tag tree, the complexity
of MDR is O(NK) without considering string comparison (see
[11] for the detailed analysis).

2.2.2 String Comparison Using Edit Distance
The string comparison method that we use is based on the
normalized edit distance [1][7]. Let the two strings be s1 and s2.
The time-complexity of the algorithm is O(|s1||s2|) [1]. In our
application, the computation can be substantially reduced as we
are only interested in very similar strings. The computation is
only large when the strings are long. If we want the strings to
have the similarity of more than 50%, we can use the following
method to reduce the computation: If |s1| > 2|s2| or |s2| > 2|s1|, no
comparison is needed because they are obviously too dissimilar.

2.2.3 Determining Data Regions
We now identify each data region by finding its generalized
nodes. We use Figure 7 to illustrate the issues. There are 8 data
records (1-8) in this page. Our algorithm reports each row as a
generalized node and the dash-lined box as a data region.
The algorithm basically uses the string comparison results at each

1

3

10

2

7 8 9

Region 2

5 6

Region 1

4

11 12

14 15 16 17 18 13

Region 3

2 1 3 4 6 5 7 8 9 10

p

parent node to find similar children node combinations to obtain
candidate generalized nodes and data regions of the parent node.
Three main issues are important for making the final decisions.

Figure 7. A possible configuration of data records
1. If a higher level data region covers a lower level data region,

we report the higher level data region and its generalized
nodes. Cover here means that a lower level data region is
within a higher level data region. For example, in Figure 7, at
a lower level we find that cells 1 and 2 are candidate
generalized nodes and they together form a candidate data
region, row 1. However, they are covered by the data region
including all the 4 rows at a higher level. In this case, we only
report each row is a generalized node.

2. A property about similar strings is that if a set of strings s1, s2,
s3, �., sn, are similar to one another, then a combination of
any number of them is also similar to another combination of
them of the same number. Thus, we only report generalized
nodes of the smallest length that cover a data region. In Figure
7, we only report each row as a generalized node rather than a
combination of two rows (rows 1-2, and rows 3-4).

3. An edit distance threshold is needed to decide whether two
strings are similar. A set of training pages is used to decide it.

The algorithm for this step is given in Figure 8. It finds every data
region and its generalized nodes in a page. T is the edit distance
threshold. Node is any node. K is the maximum number of tag
nodes in a generalized node. Node.DRs is the set of data regions
under Node, and tempDRs is a temporal variable storing the data
regions passed up from every Child of Node. Line 1 is the same as
line 1 in Figure 5. The idea of the algorithm is to traverse the tag
tree top-down in a depth-first fashion. It performs one function at
each node when it goes down (line 2), and performs another when
it backs up before going down to another tree branch (line 6).

1. When it goes down, at each node it identifies all the candidate
data regions of the node using procedure IdentDRs (line 2).

2. When it backs up, it checks to see whether the parent level
data regions in Node.DRs cover the child level data regions.
Those covered child level data regions are discarded. We take
the parent level data regions as we believe they are more
likely to be true data regions. Those uncovered data regions in
Child.DRs are returned and stored in tempDRs (line 6). After
all the children nodes of Node are processed, Node.DRs ∪
tempDRs gives the current data regions discovered from the
sub-tree starting from Node (line 7).

We now discuss procedure IdentDRs. Note that the previous step
has computed the distance values of all possible child node
combinations. This procedure uses these values and the threshold

T to find data regions of Node. That is, it needs to decide which
combinations represent generalized nodes, where the beginning is
and where the end is for each data region.

Algorithm FindDRs(Node, K, T)
 1 if TreeDepth(Node) => 3 then
 2 Node.DRs = IdenDRs(1, Node, K, T);
 3 tempDRs = ∅;
 4 for each Child ∈ Node.Children do
 5 FindDRs(Child, K, T);
 6 tempDRs = tempDRs∪UnCoveredDRs(Node, Child);
 7 Node.DRs = Node.DRs ∪ tempDRs

Figure 8: Finding all data regions in the tag tree

Procedure IdentDRs is given in Figure 9, which ensures the
smallest generalized nodes are identified. The IdentDRs
procedure is recursive (line 15). In each recursion, it extracts the
next data region maxDR that covers the maximum number of
children nodes. maxDR is described by three members (line 1),
(1) the number of nodes in a combination, (2) the location of the
start child node of the data region, and (3) the number of nodes
involved in or covered by the data region. curDR is the current
candidate data region being considered. String comparison results
are stored in a data structure attached with each node. The value
can be obtained by calling procedure Distance(Node, i, j) (which
is just a table lookup, and is not listed here), where i represents i-
combination, and j represents the jth child of Node. IdentDRs
basically checks each combination (line 2) and each starting point
(line 3). For each possibility, it finds the first continuous region
with a set of generalized nodes (lines 5-10). Lines 11-12 update
the maximum data region maxDR. The conditions in line 11
ensure that smaller generalized nodes are used unless the larger
ones cover more nodes and starts no later than the smaller ones.

Procedure IdentDRs(start, Node, K, T)
1 maxDR = [0, 0, 0];
2 for (i = 1; i <= K; i++) /* compute for each i-combination */
3 for (f = start; f <= i; f++) /* start from each node */
4 flag = true;
5 for (j = f; j < size(Node.Children); j+i)
6 if Distance(Node, i, j) <= T then
7 if flag=true then curDR = [i, j, 2*i];
8 flag = false;
9 else curDR[3] = curDR[3] + i;
10 elseif flag = false then Exit-inner-loop;
11 if (maxDR[3] < curDR[3]) and
 (maxDR[2] = 0 or (curDR[2]<= maxDR[2]) then
12 maxDR = curDR;
13 if (maxDR[3] != 0) and
14 (maxDR[2]+maxDR[3]-1 != size(Node.Children)) then
15 return {maxDR}∪
 IdentDRs(maxDR[2]+maxDR[3], Node, K, T)
16 return ∅;

Figure 9. Identifying data regions below a node.
Finally, procedure UnCoveredDRs is given in Figure 10.
tempDiffDRs stores those data regions in Child.DRs that are not
covered by any data regions of Node.

 Procedure UnCoveredDRs(Node, Child)
 1 tempDiffDRs = ∅;
 2 for each data region DR in Child.DRs do
 3 if DR not covered by any region in Node.DRs then
 4 tempDiffDRs = tempDiffDRs ∪ {DR}
 6 return tempDiffDRs

Figure 10: The UnCoveredDRs procedure

row 1

row 2

row 3

row 4

1 2

3 4

5 6

8 7

Assume that the total number of nodes in the tag tree is N, the
complexity of FindDRs is O(NK2). Since K is normally very
small. Thus, the computation requirement of the algorithm is low.

2.3 Identify Data Records
After all data regions and their generalized nodes are found from
a page, we can identify data records in each region. As noted
earlier, a generalized node may not be a data record containing a
single object because procedure UnCoveredDR reports higher
level data regions. The actual records may be at a lower level, i.e.,
a generalized node may contain one or more data records.

Figure 11 shows a data region that contains two table rows (1 and
2). Row 1 and row 2 have been identified as generalized nodes.
However, they are not individual data records. Each row actually
contains two data (objects) records in the two cells.

Figure 11: Each row with more than one data record

To find data records from each generalized node in a data region,
the following constraint is useful: If a generalized node contains
two or more data records, these data records must be similar in
terms of their tag strings. This constraint is clear because we
assume that a data region contains descriptions of similar objects.
Identifying data records from each generalized node is relatively
easy because they are nodes (together with their sub-trees) at the
same level as the generalized node, or nodes at a lower level of
the tag tree. Our experiments show that we only need to go down
one level to check if data records are there. If not, the data records
are at the same level as the generalized node. This is done based
on the above constraint as all string comparisons have been done.
This step, however, needs heuristic knowledge of how people
present data objects (see [11] for details). Our method for finding
non-contiguous object descriptions is also given in [11].

3. EXPERIMENT RESULTS
We evaluate our system (MDR) and compare it with two state-of-
the-art systems, OMINI [2], and IEPAD [3]. Both systems are
publicly available (OMINI: http://disl.cc.gatech.edu/Omini/, IEPAD:
http://140.115.155.99). The results are given in Table 1. Below, we
first describe some experimental settings.

Experiment Web pages: We use the whole set of 18 pages from
OMINI�s homepage. Since most Web pages change frequently,
three pages in OMINI did not contain any regularly data records
when we performed our experiments. Thus, these 3 pages are not
included. We also used a large number of other pages from a wide
range of domains, books, travel, software, auctions, jobs,
electronic products, shopping, and search engine results.

Edit distance threshold: We used a number of training pages
(not used in testing) in building our systems and in selecting the
edit distance threshold, which is decided to be 0.3.
Evaluation measures: We use the standard measures of precision
and recall to evaluate the results from different systems.
Experimental results: We now discuss the results in Table 1.
Columns 1 and 2: Column 1 gives the id number of each

experiment or Web page. The first 15 pages are from OMINI.
Column 2 gives the URL of each page.

Column 3: It gives the number of data records contained in each

page. These are those obvious data records of the page. They
do not include navigation areas, which can have patterns as
well. Since OMINI tries to identify the main objects in the
page, it does not give navigation areas or other smaller regions.
However, both IEPAD and MDR are able to report such
regions if they exist. Although it may be possible to remove
them by using some heuristics, we choose to keep them
because they may be useful to some users.

Column 4: It shows the number of data records found by our
system MDR. It gives perfect results for all pages except one,
paper 44. For this page, MDR lost one data record.

Columns 5, 6 and 7: Column 5 shows the number of correct data
records found by OMINI. Column 6 gives the total number of
data records (which may not be correct) found by OMINI.
Column 7 gives some remarks about the problems with OMINI.

Columns 8, 9 and 10: They give the three corresponding results of
IEPAD for each page. IEPAD often produces a large number of
rules to extract information from data records. We tried every
rule and present the best result in column 8 for each page.

The last two rows of the table give the total number of data
records in each column, the recall and the precision of each
system. The precision and the recall are computed based on the
total number of data records found in all pages by each system.

Before further discussing the experimental results, we first
explain the problem descriptions used in the table:

all-in-n (m-in-n) with noise: It means that all (or m) data records
are identified as n data records (m > n). �with noise� means that
some items in the data records are not part of the data records.

n-err.: It means that n (extra) incorrect data records are found.
miss n objects: n correct data records are not identified.
split into n: This means that correct data records are split into n

smaller ones, i.e., a data record is not found as one but a few.
none-found: None of the correct data records is found.
all-miss-info (n-miss-info): This means that all (or n) data records

found by the system with some parts missing.
The following summarizes the experimental results in Table 1.
1. Our system MDR is able to give perfect results for every page

except for page 44. For this page, one data record is not found
because it is too dissimilar to its neighbors. From the last two
rows, we can see that MDR has a 99.8% recall and 100%
precision. Both OMINI and IEPAD only have a recall of 39%.

2. In columns 7 and 10, those cells that do not contain remarks
show that the system finds all data records correctly. OMINI
only gives perfect results for 6 pages out of 46, while IEPAD
gives perfect results for only 14 pages. Our MDR system is
able to give perfect results for all the pages except page 44.

3. In column 7, we see that in 20 pages, many data records are
identified together as one by OMINI and also include some
noisy items. This clearly shows the serious weakness of
OMINI�s tag based heuristic approach.

4. Both OMINI and IEPAD are unable to find non-contiguous
structures. Such cases occur in pages 1, 4 and 36.

Execution time: On a Pentium 4 PC 1.4GHz and 512 MB RAM,
the execution time for each page is always less than 0.5 second.

4. CONCLUSION
This paper proposed a novel and effective technique to mine data
records in a Web page. The algorithm is also able to discover non-
contiguous data records, which cannot be handled by existing
techniques. Experimental results show that the new method
outperforms two existing state-of-the-art systems dramatically.

Object 1 Object 2

Object 3 Object 4

row 1

row 2

5. REFERENCES
[1] Baeza-Yates, R. �Algorithms for string matching: A survey.�

ACM SIGIR Forum, 23(3-4):34--58, 1989
[2] Buttler, D., Liu, L., Pu, C. "A fully automated extraction

system for the World Wide Web." IEEE ICDCS-21, 2001.
[3] Chang, C-H., Lui, S-L. �IEPAD: Information extraction

based on pattern discovery.� WWW-10, 2001.
[4] Cohen, W., Hurst, M., and Jensen, L. �A flexible learning

system for wrapping tables and lists in HTML documents.�
WWW-2002, 2002.

[5] Doorenbos, R., Etzioni, O., Weld, D. �A scalable comparison
shopping agent for the World Wide Web.� Agents-97, 1997.

[6] Embley, D., Jiang, Y and Ng, Y. �Record-boundary

discovery in Web documents.� SIGMOD-99, 1999.
[7] Gusfield, D. Algorithms on strings, tree, and sequence. 1997.
[8] Hsu, C.-N., and Dung, M.-T. �Generating finite-state

transducers for semi-structured data extraction from the
Web.� Information Systems. 23(8): 521-538, 1998.

[9] Kushmerick, N. �Wrapper induction: efficiency and
expressiveness.� Artificial Intelligence, 118:15-68, 2000.

[10] Lerman, K. Knoblock, C., and Minton, S. �Automatic data
extraction from lists and tables in web sources.� IJCAI-01
Workshop on Adaptive Text Extraction and Mining, 2001.

[11] Liu, B., Grossman, R. and Zhai, Y. �Mining data records in
Web pages.� UIC Technical Report, 2003.

[12] Muslea, I., Minton, S. and Knoblock, C. �A hierarchical
approach to wrapper induction.� Agents-99, 1999.

OMINI IEPAD
URL

Obj.

MDR corr. found remark corr. found remark

1 http://www.bookbuyer.com 4 4 2 4 all-miss-info 4 5 all-miss-info
2 http://www.powells.com 4 4 4 5 1 err. 0 0 none-found
3 http://www.barnesandnoble.com 4 4 0 5 all-in-1 with noise 0 7 none-found
4 http://www.codysbooks.com 6 6 0 3 all-in-1 with noise 6 7 all-miss-info
5 http://www.bookpool.com 25 25 25 26 1 err. 0 12 none-found
6 http://www.borders.com 25 25 25 25 14 14 miss 9 objects
7 http://www.alphabetstreet.infront.co.uk 10 10 0 8 none-found 10 10
8 http://www.ebay.com 7 7 0 1 all-in-1 with noise 7 7
9 http://auctions.yahoo.com 6 6 0 3 all-in-1 with noise 6 7 1 err, all-miss-info

10 http://www.drugstore.com 8 8 0 0 none-found 7 7 miss 1 object
11 http://www.epicurious.com 3 3 0 0 none-found 0 12 none-found
12 http://www.mymenus.com 6 6 0 2 none-found 0 6 none-found
13 http://www.cooking.com 11 11 0 3 none-found 9 14 2 split into 5
14 http://www.eve.com/ 9 9 0 2 all-in-1 with noise 9 9
15 http://www.etoys.com 5 5 4 4 miss 1 object 5 5 all-miss-info
16 http://www.tourvacationstogo.com 70 70 70 70 0 5 none-found
17 http://www.tourturkey.com 6 6 5 6 1 err. 0 0 none-found
18 http://www.asiatravel.com 18 18 0 4 all-in-1 with noise 15 15 all-miss-info
19 http://www.mapquest.com 2 2 0 4 all-in-1 with noise 0 5 none-found
20 http://www.travelocity.com 5 5 0 7 all-in-1 with noise 5 5
21 http://www.ubid.com 22 22 0 2 all-in-1 with noise 13 27 extra 14 wrong
22 http://www.grijns.net/ 62 62 0 14 all-in-12 with noise 5 5 miss 57 object
23 http://journeys.20m.com 8 8 3 5 miss 5 objects 8 10 extra 2 wrong
24 http://www.softwareoutlet.com 9 9 0 3 all-in-1 with noise 8 9 extra 1 wrong
25 http://qualityinks.com/index.php 66 66 0 22 all-in-22 with noise 0 0 none-found
26 http://www.nothingbutsoftware.com 17 17 14 17 3-in-1 with noise 14 14
27 http://www.newegg.com 12 12 0 5 6-in-3 with noise 6 6
28 http://chemstore.cambridgesoft.com 5 5 5 5 5 5
29 http://www.godaddy.com 4 4 0 2 all-in-1 with noise 4 11 7 err, all-miss-info
30 http://www.compusa.com 8 8 0 3 all-in-1 with noise 8 8
31 http://www.radioshack.com 9 9 3 4 miss 6 objects 9 9
32 http://www.earlemu.com 4 4 4 5 0 0 none-found
33 http://www.kadybooks.com 20 20 0 50 split into 50 10 10
34 http://www.kidsfootlocker.com 9 9 0 1 all-in-1 with noise 9 9 2-miss-info
35 http://shop.lycos.com 13 13 0 2 all-in-1 with noise 5 5
36 http://thenew.hp.com 4 4 0 5 all-in-1 with noise 0 10 split into 10
37 http://www.dell.com 5 5 5 5 5 5
38 http://www.circuitcity.com 4 4 0 0 none-found 0 6 none-found
39 http://www.overstock.com 3 3 3 3 0 8 split into 8
40 http://www.kodak.com 3 3 0 6 none-found 0 6 none-found
41 http://www.flipdog.com 25 25 25 28 3 err. 0 0 none-found
42 http://www.summerjobs.com 20 20 0 3 none-found 0 7 none-found
43 http://search.lycos.com 10 10 0 8 all-in-2 with noise 10 10
44 http://www.northernlight.com 10 9 10 11 1 err. 10 10 all-miss-info
45 http://www.coolhits.com 20 20 20 21 1 err. 0 0 none-found
46 http://www.mamma.com 15 15 15 20 5 err. 15 15
 Total 621 620 242 432 241 357
 Recall / Precision 99.8% / 100% 39% / 56% 39% / 67%

Table 1: Experimental results

