
Caching and Migration for Multilevel Persistent Object Stores

Robert Grossman, David Hanley, and Xiao Qin
Laboratory for Advanced Computing

University of Illinois at Chicago
Chicago, Illinois

Albstract

W propose an architecture for scalable persistent object
managers that provide access to large numbers of objects
distributed over a variety of physical media. Our approach
is lightweight in that we are interested in providing direct
stqport for the creation, access, and updating of persistent
objects, but only indirect support for the other-functions
traditionally associated with an object oriented database,
such as transactions, back up, recovery, or a query lan-
gu:age. This design allows application programmers access
to the productivity and performance of using objects, while
rer!ying on an underlying hierarchical storage system to
manage the large amounts of data.

Our design is layered and multilevel in that it caches
and migrates large-grainedphysical collections of objects
called folios from tape to networked disks. Separately, it
also caches and migrates smaller-grained physical collec-
tions of objects called segments between nodes on a net-
work. Segments are then moved into memory as usual for
persistent object managers.

In this papel; we also describe the implementation of
a ,system called PTool based upon this design and give a
description ofpreliminary pegormance results. Previously,
in version 0.4 of PTool, we used a single-level caching al-
gorithm between the hierarchical storage system and the
object managel: This algorithm is described in the Twe@h
IEEE Symposium on Mass Storage Systems. PTool, with this
caching algorithm, has been used in high energy physics
and aeronautics. On the basis of this experience, a mul-
tilevel caching algorithm was designed and implemented
in Version 0.6 of PTool. This version of PTool has been
used for applications in high energy physics, aeronautics,
decision support, and multimedia applications. Since then,
in version 2, we have redesigned PTool to take advantage
of specialized segment managers to handle networked disk,
tape, and other media.

This research was supported in part by NASA grant
NAG2-513, DOE grant DE-FGO2-92ER25133, and NSF
grants IRI 9224605 and CDA-9303433, The Laboratory for

Advanced Computing at UK, and by the National Scalable
Cluster Project.

Introduction

A current challenge is to develop low overhead, high perfor-
mance persistent object stores for scientific and engineer-
ing applications that scale as the amount of data increases
and that balance the input-output demands and processing
demands of applications. In this paper, we are specifically
concerned with understanding some of the issues and strate-
gies in systems which provide transparent access to large
numbers of objects distributed over a variety of physical
media.

The essential issue is the way in which physical collec-
tions of objects are accessed, cached, and migrated. Recall
that an object is called persistent when it exists indepen-
dently of the process that creates it. In other words, persis-
tent objects have been written to permanent media, such as
a disk. We assume that objects are gathered together into
physical collections called segments, as is usual for per-
sistent object managers, and that segments are themselves
gathered together into physical collections called folios.
This hierarchy is essential for scalable persistent object
stores, since managing a terabyte sized object store using
segments alone is impractical due simply to the number of
segments required.

Our approach can be characterized as lightweight in
the sense that we are interested in the design of a sys-
tem that provides scalable access to collections of ob-
jects distributed over a variety of physical media, but
we are not interested in providing direct support for
many of the features traditionally found in an object-
oriented database, such as transactions, backup and re-
covery, or a query language. Rather, when these features
are needed, we feel that they should be added incremen-
tally by interfacing additional components, as illustrated in
Figure 1.

In this paper, we describe an architectural design, an
implementation, and our early experience with a system

127
lO!jl-9173/95 $4.0001995 IEEE

Proceedings of the Fourteenth IEEE Symposium on Mass Storage Systems (MSS '95)
1051-9173/95 $10.00 © 1995 IEEE

Persistent
Object
Manager
to create,
access
and
update
persistent
objects

Collection Classes

Persistent Object Manager Clients

Figure 1. An object oriented database supports a vari-
ety of capabilitiesfrom transactions to a query language.
With lightweight data management, additionalfunctional-
ity is added as needed, so that an application which only
requires access to persistent objects can do so without
incurring the overhead of a full function database.

called PTool([1],[2]) for the lightweight data management
of persistent objects distributed over a variety of physical
media that:

o provides low overhead, high performance access to the
objects

o provides multilevel caching of segments and folios
o prefetches segments and folios to improve performance
e stripes segments and folios to improve performance
. has a modular interface to hierarchical storage systems

and supports different strategies for interoperating with
hierarchical storage systems.

Our approach differs from current approaches in sev-
eral ways. First, our interest is in lightweight data manage-
ment, not in databases. Second, our design is multilevel:
we cache and migrate from memory to local disk, from lo-
cal disk to network disk, and from disk to tape. Third, our
cache is multigranular: the size of the extent that we cache
between disk and memory need not be the same as the size
of the extent that we cache between disk and tape. This is
important in order that the size of the extent can be matched
to the bandwidth and latency of the channel or network.

Version 0.4 of PTool used a single-level caching al-
gorithm between the hierarchical storage system and the
object manager. This algorithm is described in [3]. On the
basis of this experience, a multilevel caching algorithm was
designed and implemented in Version 0.6 of PTool. PTool,
with this caching algorithm, has been used in high energy
physics ([41,[51), aeronautics 161, and a variety of other
applications. Version 2.0 was completely rewritten to pro-
vide direct support for segments and folios independently

Fourteenth IEEE Symposium on Mass Storage Systems

of whether they were on local or network input-output de-
vices. This version also introduced striping.

Related work

Recently, there has been growing interest in coupling
databases to hierarchical storage systems. For example, im-
plementations that interface a hierarchical storage system
to a relational database have been described ([8],[91). A
proposal for extending POSTGRES to provide support for
accessing tertiary storage was made by Stonebraker [lo].
Access to data provided by NASA’s proposed Rarth Ob-
serving System also require that databases be interfaced
to hierarchical storage systems [111. The challenges to the
database community provided by trying to access tuples on
tape is nicely summarized in [121.

The caching algorithm we propose here is analogous to
caching algorithms used for distributed file systems [131 and
[14]. There have been a variety of caching algorithms for
client-server database systems that utilize a page-server ar-
chitecture ([15],[161). In these systems, a number of clients
make requests to a server for pages. Our caching algorithm
can be viewed as a multilevel analogy to these types of
systems.

Model

Recall that our goal is to understand how to design and
develop persistent object stores which scale as the amount
of data increases and which balance the input-output and
processing requirements of high performance applications.
Also recall that our approach is lightweight in the sense
that we are interested in providing direct support for cre-
ating, accessing, and updating collections of persistent ob-
jects, but provide only indirect support for functions such
as transactions, backup, and recovery.

For the logical model, we assume that there are objects,
that objects belong to collections, and that collections be-
long to stores. Collections themselves are objects and hence
can belong to other collections. Objects can be referenced
directly through an object ID or indirectly by requesting the
next object in a collection. See Figure 2.

For the physical model, we assume that there are ob-
jects, that objects are gathered into physical units of fixed
size called segments, and that segments are gathered into
physical units of fixed size called folios. An object store
physically consists of one or more folios. See Figures 2
and3.

For the architectural model, we assume that processes
make requests to persistent object managers for objects.
Also, when required, we assume that persistent object man-
agers make requests to segment managers for segments.

128

Proceedings of the Fourteenth IEEE Symposium on Mass Storage Systems (MSS '95)
1051-9173/95 $10.00 © 1995 IEEE

Figure 2. At a logical level, objects are grouped into col-
lections and collections into object stores. Objects them-
selves can also belong to object stores directly. At aphysi-
cal level, objects are grouped into segments, segments into
folios, andfolios into object stores. Note that objects and
object stores have both a logical and physical existence.

Local - Networked disk

Segments

11 Folios

I Hierarchical Storage System
I

I I

Eigure 3. Objects are managed in physical collections
called segments and folios. An object is contained in one
or more segments. Segments are cached and migrated
between local and networked disk to local memory and
between disks attached to different nodes. Physical col-
lections of segments offixed size are calledfolios. Folios
are cached and migrated between local and networked
disks and hierarchical storage.

Finally, when required, we assume that segment managers
make requests to folio managers for folios. See Figure 4.

As mentioned previously, to specify the physical location of
an object requires specifying the store that contains it, the
correct folio within the store, and the correct segment within
the folio. Finally, the location is determined by specifying
the offset within the segment. The architectural model pro-
vides separate components to manage objects, segments,
folios, and storage.

One variant of the architectural model is for the seg- (1) Persistent object managel: The persistent object man-
ment manager to keep track of the folios so that no sep- ager itself creates and accesses persistent (objects. It
arate folio manager is needed. Another variant is for the also creates, opens, and closes stores.
hierarchical storage system to manage the folios and for (2) Segment managel: If the segment containing a ref-
either the segment manager or the folio manager to request erenced persistent object is not currently available
the desired folios from the hierarchical storage system. in memory or virtual memory, the persistent object

Fourteenth IEEE Symposium on Mass Storage Systems

Persistent Object Manager Client

Persistent Object Manager

Segment Manager

- ~

Folio Manager

Hierarchical Storage System

Figure 4. This figure illustrates the inteqaces between
the components in the architectural model. The multi-
level caching algorithm we propose here is based upon
caching and migration of different granularities of ob-
jects between different levels in this architecture: folios
between the storage system and the folio manager and
segments between the folio manager and segment man-
agel: As illustrated, for some applications it is convenient
for the segment manager to inteqace directly to the hier-
archical storage system.

The reason for this hierarchy is easy to see. In a typ-
ical implementation, the persistent object manager moves
segments from disk to memory as needed. Segments are
analogous to blocks in file systems. Segments can vary in
size from tens of kilobytes to megabytes. The problem is
that a terabyte size store would require lo* 64 kilobyte
segments, which is impractical to manage. For this reason,
segments are gathered into folios so that the folios can be
managed separately.

Architectural design

Components

129

Proceedings of the Fourteenth IEEE Symposium on Mass Storage Systems (MSS '95)
1051-9173/95 $10.00 © 1995 IEEE

