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Abstract

Motivation: The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation
and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort
Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties.
However, users may be better able to describe their desired cohort in free-text natural language.

Results: We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically
generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort
back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate
multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves
better results than GPT-40 prompting in generating GDC cohorts.

Availability and implementation: \We implement and share GDC Cohort Copilot as a containerized Gradio app on HuggingFace Spaces, avail-

able at https://huggingface.co/spaces/uc-ctds/GDC-Cohort-Copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds. All
source code is available at https://github.com/uc-cdis/gdc-cohort-copilot.

1 Introduction

The National Cancer Institute’s (NCI) Genomic Data Commons
(GDC) is a highly used resource for cancer research. With over
100 000 unique monthly users, the GDC provides access to high
quality, harmonized, multimodal cancer data for over 45 000
patient cases (Heath ez al. 2021). A typical user workflow using
the GDC is to curate a cohort of cases before doing subsequent
analysis, either using tools within the GDC Data Portal or
through the GDC API (Jensen et al. 2017). Central to this work-
flow is the set of filters used to construct the cohort.

The GDC provides the Cohort Builder tool to allow users
to interactively select their desired filters. The Cohort Builder
is a powerful tool which allows users to select specific values
from over 700 filter properties. While the Cohort Builder
organizes commonly used filters into user-readable groupings,
there are still dozens of properties, each with potentially a
hundred or more possible values to filter by. This balance of
allowing users to create specific and verbose filters while pro-
viding a user-friendly interface is complex. New users of the
GDC may especially find it difficult to identify the filters most
relevant for their research. However, such users may naturally
be able to describe their desired cohort in natural language.

Here, we present GDC Cohort Copilot, an open-source Al
copilot that enables users to curate GDC cohorts using natu-
ral language. Following the recent success of large language
models (LLMs) in generating structured code (Chen et al.
2021) and database query languages (Ganesan et al. 2024,
Pourreza et al. 2025), the GDC Cohort Copilot is powered
by GDC Cohort LLM, an LLM trained to generate structured
GDC cohort filters from free-text user input. We demonstrate
that our locally-served, open-source model outperforms
GPT-40 prompting in cohort construction accuracy. Once
generated by the model, the tool automatically populates the
cohort filter into a GDC Cohort Builder-like interface that
allows the user to further refine their desired cohort. We pro-
vide a mechanism for exporting the curated cohort back to
the GDC for further analysis. We release GDC Cohort
Copilot as the overall framework presented in Fig. 1, the
GDC Cohort LLM, and the containerized web app.

2 Materials and methods

GDC Cohort Copilot is comprised of both the generative
GDC Cohort LLM and the containerized web app interface.
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Figure 1. Overview of GDC Cohort Copilot implementation and user workflow. (A) Implementation of GDC Cohort Copilot involves training the GDC
Cohort LLM to translate from a natural language query of a cohort to the cohort filter JSON. The cohort JSONs are derived from datasests of real user-
made cohorts or synthetically generated cohorts. The paired natural language queries are generated by a frozen LLM using the cohort JSONs. The final
trained GDC Cohort LLM model is served in a containerized web app that exposes a GDC Cohort Builder-like interface running on HuggingFace Spaces.
(B) A user curates their desired cohort using the GDC Cohort Copilot by: (1) inputting a natural language description of a desired cohort (2) which is
automatically passed to GDC Cohort LLM. The model is served using Guidance inside a Gradio app. (3) The resulting generated cohort filter is
automatically populated back into the interface, allowing the user to manually refine their cohort before (4) exporting the curated cohort to the NCI GDC.

The overview of its implementation and user workflow is pre-
sented in Fig. 1.

2.1 Inputs and outputs

The primary input to the GDC Cohort Copilot is a natural
language description of a GDC cohort, for example: “cases
with gene expression data derived from RNA sequencing for
lung adenocarcinoma.” Upon submitting the query, the app
uses GDC Cohort LLM model to generate and return the cor-
responding cohort filter JSON. The interface automatically
populates the corresponding checkboxes for filter properties
specified by the generated JSON. A user can interactively re-
fine the cohort selections, before ultimately exporting and
outputting a text file of GDC case identifiers. These case iden-
tifiers can be imported by the GDC for further analysis.

2.2 Core set of filter properties

In this initial release of the GDC Cohort Copilot, we simplify
the development of the tool by considering only a subset of
68 filter properties from the GDC Cohort Builder. These are
the default and most commonly used filter properties exposed
by the GDC Data Portal v2.4.0 and additionally have prede-
fined lists of possible values or value ranges (e.g. disease type
or age at diagnosis). We refer to this subset of filters as the
“core set.” We create a JSON schema (from a Pydantic data
model) to validate possible filters comprised of the core set.

2.3 GDC Cohort LLM

The GDC Cohort Copilot is powered by a generative LLM,
GDC Cohort LLM, which translates natural language queries

of cohorts into cohort filter [SONs. We describe here the de-
velopment and evaluation of GDC Cohort LLM.

2.3.1 Training and evaluation data

GDC Cohort LLM is trained over paired natural language
queries and cohort filter JSONs. This data is derived from
real user-generated and synthetic cohort filters. About 68 209
user-generated cohort filters were supplied by the GDC User
Services team from their database of GDC user-saved
cohorts. Removing duplicates, null filters, filters with proper-
ties outside of the core set, and filters which fail schema vali-
dation results in 16 235 usable cohort filters. We additionally
experiment with augmenting our dataset by randomly sam-
pling synthetic cohorts filters. Specifically, we randomly sam-
ple fields and values from the core set of filter properties.
Further details on our random sampling procedure are pro-
vided in Section A.1 (available as supplementary data at
Bioinformatics Advances online). We experiment with aug-
menting our training data using 100 000 and 1 000 000 syn-
thetic cohort filters.

One of the primary limitations of our cohort filter dataset
is that it does not contain any user-generated natural lan-
guage descriptions of the cohorts. To address this challenge,
we prompt Mistral-7B-Instruct-v0.3 (Jiang et al. 2023) to
generate a corresponding natural language query for a given
cohort filter JSON. Our precise procedure for this reverse
translation, including the prompt we use, is provided
in Section A.4 (available as supplementary data at
Bioinformatics Advances online). We apply this method to all
real and synthetic cohort filters.
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We finally split our paired samples derived from real user-
generated data into 14 235 for training and 2000 for evalua-
tion. For the evaluation split, we ensure that the model-
specific token length of the natural language query and co-
hort filter for all samples fit within the minimum context
length of the different models we experiment with.
Additionally, we require that the evaluation samples do not
result in empty cohorts (cohorts with 0 cases). This allows us
to directly compare each experiment’s results which were de-
rived over precisely the same set of data samples.

We further derive a subset of 200 user-generated cohort fil-
ters, from the 2000 evaluation samples, for manual annota-
tion. Motivated by the observation that LLMs tend to generate
explicit and verbose text (Saito et al. 2023, Briakou et al.
2024), we manually write the natural language description for
these cohort filters aiming to be less verbose. For example, if a
cohort filter selects all lung lobes, the LLM generated synthetic
query lists each of the lung lobes. However, a more natural
way to describe this filter is simply “any lung lobe.”

2.3.2 Model implementation

We experiment with three pretrained LLMs of different
architectures and scales: GPT-2 (Radford et al. 2019), BART
(Lewis et al. 2020), and Mistral-7B-Instruct-v0.3 (Jiang et al.
2023). We train each of these models using a causal language
modeling (CLM—autoregressive) objective. For BART, the
input to the encoder is the natural language query while the
output of the decoder is the cohort filter JSON. For GPT-2
and Mistral, we concatenate the natural language query with
the cohort filter JSON. Additionally, for Mistral, we use low
rank adaptation (LoRA) (Hu ez al. 2022) to efficiently train
the model for our translation task. We load model weights
from HuggingFace and use HuggingFace utilities for training
our models. Further training details are described in Section
A.2 (available as supplementary data at Bioinformatics
Advances online).

At evaluation time, for efficient batched inferencing, we
serve the trained models using vLLM (Kwon et al. 2023) with
structured decoding using Outlines (Willard and Louf 2023) to
ensure that our generated outputs are valid cohort filter JSON.
One limitation of the JSON schema we develop (Section 2.2) is
that it does not strictly enforce field and property strings;
rather, our schema enforces the structure of the filter.

2.3.3 Evaluation metrics

After training the variations of GDC Cohort LLM, differing
either in model type or data mixture, we evaluate the gener-
ated cohort filters. As we aim to enable accurate retrieval of
cohorts, we do not directly evaluate the cohort filter; instead
we compare the cases retrieved by the generated cohort filter
to the cases retrieved by the true cohort filter. This allows
flexibility in the actual content of the cohort filter as many fil-
ters may result in the same set of cases, for example selecting
the TCGA program is equivalent to selecting all of the indi-
vidual TCGA projects together. We thus compute three met-
rics for each filter’s set of cases: sensitivity (true positive
rate—TPR), Jaccard index (intersection over union—IoU),
and a binary indicator for if the predicted and actual cases
precisely match (Exact). If a generated filter is not valid (ei-
ther due to context length truncation or imprecise generated
field or value names) and cannot be used to retrieve cases us-
ing the GDC API, we use the empty set. TPR, IoU, and Exact
are guaranteed to be finite and equal 0 if there are no

predicted cases, as we ensure that the actual cases are never
null (Section 2.3.1).

While we do not require the generated cohort filter pre-
cisely match the actual filter, we do evaluate whether they are
semantically similar. To do so, we reverse translate the pre-
dicted cohort filters into natural language queries and com-
pute the F1 BERTScore (Zhang et al. 2020) (BERT) between
the original and derived queries. We specifically use SciBERT
(Beltagy et al. 2019) in the computation of the BERTScore.
Additionally, we compare all of our trained models against a
prompting-based alternative using OpenAI’s GPT-40 (Hurst
et al. 2024) that requires an expensive, long context window
of ~15 000 tokens per prompt. Further details of this com-
parison implementation are provided in Section A.3
(available as supplementary data at Bioinformatics Advances
online). Finally, we report the average of all metrics across all
2000 evaluation filters and apply paired #-tests (for TPR,
IoU, BERT metrics) or McNemar’s test (for Exact metric)
with Bonferroni correction to evaluate statistical significance.

2.3.4 Web app, containerization, and deployment

We develop the web app for GDC Cohort Copilot as a
Gradio (Abid et al. 2019) app deployed in a HuggingFace
Space. HuggingFace Spaces provides out-of-the-box contain-
erization with Gradio apps, enabling users to download and
run GDC Cohort Copilot locally with docker. We package
the GPT-2 variant of GDC Cohort LLM, trained over real
and 1 million synthetic data samples, with GDC Cohort
Copilot; in addition to its strong evaluation metrics, its archi-
tecture as a decoder-only, small-scale LLM enables it to be ef-
ficiently served. Specifically, we serve GDC Cohort LLM
using Guidance (https:/github.com/guidance-ai/guidance) for
structured generation. While we utilize GPU acceleration in
our HuggingFace Space for serving GDC Cohort LLM, the
model only requires ~1 GB of GPU VRAM and can even run
efficiently on CPU. Our implementation of GDC Cohort
Copilot allows it to be accessible to a wide variety of biomed-
ical research users.

3 Results

We first evaluate the adaptability of various model types to
our filter generation task as GDC Cohort LLM (Table 4,
available as supplementary data at Bioinformatics Advances
online). Training over user-derived data, we find that GPT-2
(TPR =0.3635; IoU=0.331; Exact=0.221) significantly out-
performs BART (TPR=0.117, P=8.56e-89; IoU=0.078,
P=7.73e-114; Exact=0.028, P=3.69¢-94) and Mistral
(TPR=0.124, P=2.33e-90; IoU=0.117, P=3.62e-380;
Exact=0.092, P =9.35¢-39) models over case-retrieval met-
rics. Over query-based metrics, GPT-2 (BERT =0.819) out-
performs BART (BERT=0.735, P=4.03e-106). While
GPT-2 is statistically worse than Mistral (BERT =0.835,
P =6.47¢-35), the difference is relatively small and not mean-
ingful in the context of poor case-retrieval capabilities.

Given GPT-2’s strong adaptability to GDC Cohort LLM,
we next explore how to improve its performance by training
over synthetic data mixtures (Table 5, available as supple-
mentary data at Bioinformatics Advances online). We find
that, compared to a baseline using only user-derived data
(TPR=0.365; IoU=0.331; Exact=0.221; BERT=0.819),
incorporating 100 000 synthetically generated records with
our real wuser data (TPR=0.783, P=9.5%-217,
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Table 1. GDC Cohort LLM is significantly better at generating GDC
cohorts across all reported metrics compared to GPT-4o (P <.05).?

Song et al.

Table 2. Conceptual comparison of GDC Cohort LLM and GPT-40 as
LLMs to power GDC Cohort Copilot.

Model TPR IoU Exact BERT Comparison GDC Cohort LLM GPT-40
GDC Cohort LLM 0.855 0.832 0.702 0.919 Achieves SOTA v X
GPT-40 0.720 0.698 0.558 0.894 Open source v X
Deploy locally v X
* Significantly better results are bolded. TPR: true positive rate; IoU: Runs on CPU-only v/ X
intersection over union; Exact: exact match; BERT: F1 BERTScore
- - Structured outputs v v
using SciBERT. o
No training X v
Required tokens <1024 >15k

IoU=0.748, P=7.19¢-227; Exact=0.607, P=1.00e-188;
BERT =0.902, P=7.67e-145) significantly improves all
metrics. We further train over a mixture of 1 million synthetic
records with user records and find that this provides signifi-
cantly stronger results (TPR=0.855, P=6.03e-18;
IoU=0.832, P=1.85e-23; Exact=0.702, P=1.20e-23;
BERT =0.919, P =3.74e-16) than using only 100 thousand
synthetic samples.

Our final GDC Cohort LLM model is thus trained from a
GPT-2 foundation over a mixture of 1 million synthetic and
real user data. Importantlyy, GDC Cohort LLM
(TPR = 0.855; ToU=0.832; Exact—=0.702; BERT =0.919)
significantly outperforms a prompting-based implementation
of cohort filter generation using GPT-40 (TPR =0.720,
P=8.01e-37; IoU=0.748, P—=2.08¢-36; Exact=0.607,
P=2.12e-37; BERT=0.894, P=3.57¢-26) across all met-
rics (Table 1). Because GDC Cohort LLM is specifically
trained for this task, to provide a more fair comparison, we
prompt GPT-40 with a list of all possible field-value pairs
which consume 15K tokens. This reduces the potential for
GPT-40 to hallucinate invalid field or value names. Despite
this, we find that our open-source, small-scale GDC Cohort
LLM model achieves better results than GPT-40. We concep-
tually compare GDC Cohort LLM to GPT-40 in Table 2.

We note that the evaluation presented in Table 1 utilizes
LLM generated queries for real user-generated filters. As
LLM generated text tends to be verbose and less natural than
human written text (Saito et al. 2023, Briakou et al. 2024),
we further evaluate GDC Cohort LLM and GPT-40 on a sub-
set of N=200 manually written, less verbose queries (de-
scribed in Section 2.3.1). We find that when using manually
written queries, GDC Cohort LLM and GPT-40 are not sig-
nificantly different (Table 3), despite GDC Cohort LLM be-
ing orders of magnitude more efficient (Table 2).

Finally, we package GDC Cohort LLM with our GDC
Cohort Copilot tool as a containerized Gradio app running
on HuggingFace Spaces. GDC Cohort Copilot can addition-
ally be downloaded and run locally using docker. We serve a
GDC Cohort Builder-like interface to allow users to interac-
tively curate cohorts using both natural language based
descriptions and graphical checkboxes. We integrate with
NCI GDC by providing utilities to export curated cohorts
back to the GDC for further analysis.

3.1 Limitations

While we aim to provide a helpful tool to new users of the
GDC, we note key limitations in this initial study. First, while
we utilize the core set of filter properties (Section 2.2) that are
the default filters shown in the GDC Data Portal, there are
~700 total filter properties available in the GDC. Indeed, these
hidden-by-default filters are likely even more difficult for a new
user to find and so future work will expand the GDC Cohort

Table 3. In GDC cohort filter generation on a subset of 200 evaluation
samples, GDC Cohort LLM still outperforms GPT-40 when using model
generated queries (P <.05). However, GDC Cohort LLM is not
significantly different than GPT-40 when using manually written queries
(P>.05), yet remains orders of magnitude more

computationally efficient.®

Queries Model TPR TIoU Exact BERT
Synthetic =~ GDC Cohort LLM  0.919 0.887 0.780  0.933
GPT-40 0.720  0.718 0.585  0.899
Manual GDC Cohort LLM ~ 0.711  0.665  0.520 0.762
GPT-40 0.736 0.707  0.500  0.755

@ Significantly better results are bolded. TPR: true positive rate; [oU:
intersection over union; Exact: exact match; BERT: F1 BERTScore
using SciBERT.

Copilot to these filter properties. Next, we note that in our ex-
periment utilizing human written queries for human generated
cohort filters (Table 3), the writer of the query and cohort filter
are separate individuals. This is again a limitation of the dataset
(Section 2.3.1), where the result may be that the intent of the
original user who generated the filter may not have been accu-
rately captured by the manual annotator who wrote the free-
text query. Lastly, we nonetheless observe that over manually
written queries, model performance on filter generation
degrades when compared to using LLM written queries. It is ac-
tive, ongoing work to further improve the model, however, we
emphasize that no model will ever be perfect. We therefore
designed the GDC Cohort Copilot tool as not only the model,
but also the interactive interface that allows a user to dynami-
cally refine the generated cohort filter. In this way, the GDC
Cohort Copilot is a collaborative Al tool.

4 Conclusion

GDC Cohort Copilot is a novel copilot tool to use natural lan-
guage to assist in the curation of cohorts from the NCI GDC.
Users can interactively use the copilot and a graphical interface
to discover and refine their cohort. We experiment with various
model types and data mixtures to develop GDC Cohort LLM,
and demonstrate that our open-source, small-scale model is bet-
ter able to accurately translate natural language descriptions of
cohorts into their corresponding GDC cohort filter. We share
GDC Cohort Copilot as a containerized Gradio app deployed on
HuggingFace Spaces, ultimately providing an accessible tool to
aid biomedical cancer researchers in their data curation efforts.

Acknowledgements

We thank Bill Wysocki and Wendy Teo from the GDC User
Services team for their assistance in gathering data and testing

G20z Jleqweoa( G| U0 1s8Nnb Aq $589ZE8/S6ZIBAA/ L /G/8|01B/SEOUBAPESOIIEIOLUIOICG/WOD dNo olwapeoe//:sdpy Woll peapeojumo(



GDC Cohort Copilot

GDC Cohort Copilot. The overview figure was created us-
ing BioRender.

Author contributions

Steven Song and Anirudh Subramanyam conceived the
experiments; Steven Song and Anirudh Subramanyam con-
ducted the experiments; Steven Song and Anirudh
Subramanyam implemented the software; Zhenyu Zhang
provided data; Steven Song wrote the manuscript; Zhenyu
Zhang, Aarti Venkat, and Robert L. Grossman supervised
the work; Steven Song, Anirudh Subramanyam, Zhenyu
Zhang, Aarti Venkat, and Robert L. Grossman reviewed and
edited the manuscript.

Supplementary data

Supplementary data are
Advances online.

available at Bioinformatics

Conflict of interest

None declared.

Funding

This work was supported by the Advanced Research Projects
Agency for Health [75N92020D00021/5N92023F00002]
and the National Institutes of Health [T32GM007281 to S.
S.]. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the US Government.

Data availability

The data underlying this article will be shared on reasonable
request to the corresponding author.

References

Abid A, Abdalla A, Abid A et al. Gradio: Hassle-free sharing and testing
of ml models in the wild. arXiv, arXiv:1906.02569, 2019, preprint:
not peer reviewed.

© The Author(s) 2025. Published by Oxford University Press.

Beltagy I, Lo K, Cohan A. Scibert: a pretrained language model for sci-
entific text. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational
Linguistics, 2019, 3615-20.

Briakou E, Liu Z, Cherry C et al. On the implications of verbose llm
outputs: a case study in translation evaluation. arXiv,
arXiv:2410.00863, 2024, preprint: not peer reviewed.

Chen M, Tworek J, Jun H et al. Evaluating large language models
trained on code. arXiv, arXiv:2107.03374, 2021, preprint: not
peer reviewed.

Ganesan B, Ghosh S, Gupta N et al. LLM-powered GraphQL generator
for data retrieval. In: Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence. Jeju, Korea: IJCAIL
2024, 8657-60.

Heath AP, Ferretti V, Agrawal S et al. The NCI genomic data commons.
Nat Genet 2021;53:257-62.

Hu EJ, Shen Y, Wallis P et al. LoRA: low-rank adaptation of large lan-
guage models. ICLR 2022;1:3.

Hurst A, Lerer A, Goucher AP et al. GPT-40 system card. arXiv,
arXiv:2410.21276, 2024, preprint: not peer reviewed.

Jensen MA, Ferretti V, Grossman RL et al. The NCI genomic data com-
mons as an engine for precision medicine. Blood 2017;130:453-9.

Jiang AQ, Sablayrolles A, Mensch A et al. Mistral 7B. arXiv,
arXiv:2310.06825, 2023, preprint: not peer reviewed.

Kwon W, Li Z, Zhuang S et al. Efficient memory management for large
language model serving with PagedAttention. In: Proceedings of the
29th  Symposium on Operating Systems Principles. Koblenz,
Germany: Association for Computing Machinery, 2023, 611-26.

Lewis M, Liu Y, Goyal N et al. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and com-
prehension. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for
Computational Linguistics, 2020, 7871-80.

Pourreza M, Li H, Sun R et al. CHASE-SQL: multi-path reasoning and
preference optimized candidate selection in text-to-sql. In: The
Thirteenth International Conference on Learning Representations.
Singapore: ICLR, 2025.

Radford A, Wu J, Child R et al. Language models are unsupervised mul-
titask learners. OpenAl Blog 2019;1:9.

Saito K, Wachi A, Wataoka K et al. Verbosity bias in preference labeling
by large language models. arXiv, arXiv:2310.10076, 2023, pre-
print: not peer reviewed.

Willard BT, Louf R. Efficient guided generation for large language mod-
els. arXiv, arXiv:2307.09702, 2023, preprint: not peer reviewed.
Zhang T, Kishore V, Wu F et al. BERTScore: Evaluating text generation
with BERT. In: 8th International Conference on Learning

Representations. Online: ICLR, 2020.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2025, 00, 1-5
https://doi.org/10.1093/bioadv/vbaf295
Application Note

G20z Jleqweoa( G| U0 1s8Nnb Aq $589ZE8/S6ZIBAA/ L /G/8|01B/SEOUBAPESOIIEIOLUIOICG/WOD dNo olwapeoe//:sdpy Woll peapeojumo(


https://dx.doi.org/10.1093/bioadv/vbaf295

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Conclusion
	Acknowledgements
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References


