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Abstract
Motivation: The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation 
and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort 
Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. 
However, users may be better able to describe their desired cohort in free-text natural language.
Results: We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically 
generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort 
back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate 
multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves 
better results than GPT-4o prompting in generating GDC cohorts.
Availability and implementation: We implement and share GDC Cohort Copilot as a containerized Gradio app on HuggingFace Spaces, avail
able at https://huggingface.co/spaces/uc-ctds/GDC-Cohort-Copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds. All 
source code is available at https://github.com/uc-cdis/gdc-cohort-copilot.

1 Introduction
The National Cancer Institute’s (NCI) Genomic Data Commons 
(GDC) is a highly used resource for cancer research. With over 
100 000 unique monthly users, the GDC provides access to high 
quality, harmonized, multimodal cancer data for over 45 000 
patient cases (Heath et al. 2021). A typical user workflow using 
the GDC is to curate a cohort of cases before doing subsequent 
analysis, either using tools within the GDC Data Portal or 
through the GDC API (Jensen et al. 2017). Central to this work
flow is the set of filters used to construct the cohort.

The GDC provides the Cohort Builder tool to allow users 
to interactively select their desired filters. The Cohort Builder 
is a powerful tool which allows users to select specific values 
from over 700 filter properties. While the Cohort Builder 
organizes commonly used filters into user-readable groupings, 
there are still dozens of properties, each with potentially a 
hundred or more possible values to filter by. This balance of 
allowing users to create specific and verbose filters while pro
viding a user-friendly interface is complex. New users of the 
GDC may especially find it difficult to identify the filters most 
relevant for their research. However, such users may naturally 
be able to describe their desired cohort in natural language.

Here, we present GDC Cohort Copilot, an open-source AI 
copilot that enables users to curate GDC cohorts using natu
ral language. Following the recent success of large language 
models (LLMs) in generating structured code (Chen et al. 
2021) and database query languages (Ganesan et al. 2024, 
Pourreza et al. 2025), the GDC Cohort Copilot is powered 
by GDC Cohort LLM, an LLM trained to generate structured 
GDC cohort filters from free-text user input. We demonstrate 
that our locally-served, open-source model outperforms 
GPT-4o prompting in cohort construction accuracy. Once 
generated by the model, the tool automatically populates the 
cohort filter into a GDC Cohort Builder-like interface that 
allows the user to further refine their desired cohort. We pro
vide a mechanism for exporting the curated cohort back to 
the GDC for further analysis. We release GDC Cohort 
Copilot as the overall framework presented in Fig. 1, the 
GDC Cohort LLM, and the containerized web app.

2 Materials and methods
GDC Cohort Copilot is comprised of both the generative 
GDC Cohort LLM and the containerized web app interface. 
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The overview of its implementation and user workflow is pre
sented in Fig. 1.

2.1 Inputs and outputs
The primary input to the GDC Cohort Copilot is a natural 
language description of a GDC cohort, for example: “cases 
with gene expression data derived from RNA sequencing for 
lung adenocarcinoma.” Upon submitting the query, the app 
uses GDC Cohort LLM model to generate and return the cor
responding cohort filter JSON. The interface automatically 
populates the corresponding checkboxes for filter properties 
specified by the generated JSON. A user can interactively re
fine the cohort selections, before ultimately exporting and 
outputting a text file of GDC case identifiers. These case iden
tifiers can be imported by the GDC for further analysis.

2.2 Core set of filter properties
In this initial release of the GDC Cohort Copilot, we simplify 
the development of the tool by considering only a subset of 
68 filter properties from the GDC Cohort Builder. These are 
the default and most commonly used filter properties exposed 
by the GDC Data Portal v2.4.0 and additionally have prede
fined lists of possible values or value ranges (e.g. disease type 
or age at diagnosis). We refer to this subset of filters as the 
“core set.” We create a JSON schema (from a Pydantic data 
model) to validate possible filters comprised of the core set.

2.3 GDC Cohort LLM
The GDC Cohort Copilot is powered by a generative LLM, 
GDC Cohort LLM, which translates natural language queries 

of cohorts into cohort filter JSONs. We describe here the de
velopment and evaluation of GDC Cohort LLM.

2.3.1 Training and evaluation data
GDC Cohort LLM is trained over paired natural language 
queries and cohort filter JSONs. This data is derived from 
real user-generated and synthetic cohort filters. About 68 209 
user-generated cohort filters were supplied by the GDC User 
Services team from their database of GDC user-saved 
cohorts. Removing duplicates, null filters, filters with proper
ties outside of the core set, and filters which fail schema vali
dation results in 16 235 usable cohort filters. We additionally 
experiment with augmenting our dataset by randomly sam
pling synthetic cohorts filters. Specifically, we randomly sam
ple fields and values from the core set of filter properties. 
Further details on our random sampling procedure are pro
vided in Section A.1 (available as supplementary data at 
Bioinformatics Advances online). We experiment with aug
menting our training data using 100 000 and 1 000 000 syn
thetic cohort filters.

One of the primary limitations of our cohort filter dataset 
is that it does not contain any user-generated natural lan
guage descriptions of the cohorts. To address this challenge, 
we prompt Mistral-7B-Instruct-v0.3 (Jiang et al. 2023) to 
generate a corresponding natural language query for a given 
cohort filter JSON. Our precise procedure for this reverse 
translation, including the prompt we use, is provided 
in Section A.4 (available as supplementary data at 
Bioinformatics Advances online). We apply this method to all 
real and synthetic cohort filters.

Figure 1. Overview of GDC Cohort Copilot implementation and user workflow. (A) Implementation of GDC Cohort Copilot involves training the GDC 
Cohort LLM to translate from a natural language query of a cohort to the cohort filter JSON. The cohort JSONs are derived from datasests of real user- 
made cohorts or synthetically generated cohorts. The paired natural language queries are generated by a frozen LLM using the cohort JSONs. The final 
trained GDC Cohort LLM model is served in a containerized web app that exposes a GDC Cohort Builder-like interface running on HuggingFace Spaces. 
(B) A user curates their desired cohort using the GDC Cohort Copilot by: (1) inputting a natural language description of a desired cohort (2) which is 
automatically passed to GDC Cohort LLM. The model is served using Guidance inside a Gradio app. (3) The resulting generated cohort filter is 
automatically populated back into the interface, allowing the user to manually refine their cohort before (4) exporting the curated cohort to the NCI GDC.
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We finally split our paired samples derived from real user- 
generated data into 14 235 for training and 2000 for evalua
tion. For the evaluation split, we ensure that the model- 
specific token length of the natural language query and co
hort filter for all samples fit within the minimum context 
length of the different models we experiment with. 
Additionally, we require that the evaluation samples do not 
result in empty cohorts (cohorts with 0 cases). This allows us 
to directly compare each experiment’s results which were de
rived over precisely the same set of data samples.

We further derive a subset of 200 user-generated cohort fil
ters, from the 2000 evaluation samples, for manual annota
tion. Motivated by the observation that LLMs tend to generate 
explicit and verbose text (Saito et al. 2023, Briakou et al. 
2024), we manually write the natural language description for 
these cohort filters aiming to be less verbose. For example, if a 
cohort filter selects all lung lobes, the LLM generated synthetic 
query lists each of the lung lobes. However, a more natural 
way to describe this filter is simply “any lung lobe.”

2.3.2 Model implementation
We experiment with three pretrained LLMs of different 
architectures and scales: GPT-2 (Radford et al. 2019), BART 
(Lewis et al. 2020), and Mistral-7B-Instruct-v0.3 (Jiang et al. 
2023). We train each of these models using a causal language 
modeling (CLM—autoregressive) objective. For BART, the 
input to the encoder is the natural language query while the 
output of the decoder is the cohort filter JSON. For GPT-2 
and Mistral, we concatenate the natural language query with 
the cohort filter JSON. Additionally, for Mistral, we use low 
rank adaptation (LoRA) (Hu et al. 2022) to efficiently train 
the model for our translation task. We load model weights 
from HuggingFace and use HuggingFace utilities for training 
our models. Further training details are described in Section 
A.2 (available as supplementary data at Bioinformatics 
Advances online).

At evaluation time, for efficient batched inferencing, we 
serve the trained models using vLLM (Kwon et al. 2023) with 
structured decoding using Outlines (Willard and Louf 2023) to 
ensure that our generated outputs are valid cohort filter JSON. 
One limitation of the JSON schema we develop (Section 2.2) is 
that it does not strictly enforce field and property strings; 
rather, our schema enforces the structure of the filter.

2.3.3 Evaluation metrics
After training the variations of GDC Cohort LLM, differing 
either in model type or data mixture, we evaluate the gener
ated cohort filters. As we aim to enable accurate retrieval of 
cohorts, we do not directly evaluate the cohort filter; instead 
we compare the cases retrieved by the generated cohort filter 
to the cases retrieved by the true cohort filter. This allows 
flexibility in the actual content of the cohort filter as many fil
ters may result in the same set of cases, for example selecting 
the TCGA program is equivalent to selecting all of the indi
vidual TCGA projects together. We thus compute three met
rics for each filter’s set of cases: sensitivity (true positive 
rate—TPR), Jaccard index (intersection over union—IoU), 
and a binary indicator for if the predicted and actual cases 
precisely match (Exact). If a generated filter is not valid (ei
ther due to context length truncation or imprecise generated 
field or value names) and cannot be used to retrieve cases us
ing the GDC API, we use the empty set. TPR, IoU, and Exact 
are guaranteed to be finite and equal 0 if there are no 

predicted cases, as we ensure that the actual cases are never 
null (Section 2.3.1).

While we do not require the generated cohort filter pre
cisely match the actual filter, we do evaluate whether they are 
semantically similar. To do so, we reverse translate the pre
dicted cohort filters into natural language queries and com
pute the F1 BERTScore (Zhang et al. 2020) (BERT) between 
the original and derived queries. We specifically use SciBERT 
(Beltagy et al. 2019) in the computation of the BERTScore. 
Additionally, we compare all of our trained models against a 
prompting-based alternative using OpenAI’s GPT-4o (Hurst 
et al. 2024) that requires an expensive, long context window 
of �15 000 tokens per prompt. Further details of this com
parison implementation are provided in Section A.3
(available as supplementary data at Bioinformatics Advances 
online). Finally, we report the average of all metrics across all 
2000 evaluation filters and apply paired t-tests (for TPR, 
IoU, BERT metrics) or McNemar’s test (for Exact metric) 
with Bonferroni correction to evaluate statistical significance.

2.3.4 Web app, containerization, and deployment
We develop the web app for GDC Cohort Copilot as a 
Gradio (Abid et al. 2019) app deployed in a HuggingFace 
Space. HuggingFace Spaces provides out-of-the-box contain
erization with Gradio apps, enabling users to download and 
run GDC Cohort Copilot locally with docker. We package 
the GPT-2 variant of GDC Cohort LLM, trained over real 
and 1 million synthetic data samples, with GDC Cohort 
Copilot; in addition to its strong evaluation metrics, its archi
tecture as a decoder-only, small-scale LLM enables it to be ef
ficiently served. Specifically, we serve GDC Cohort LLM 
using Guidance (https://github.com/guidance-ai/guidance) for 
structured generation. While we utilize GPU acceleration in 
our HuggingFace Space for serving GDC Cohort LLM, the 
model only requires �1 GB of GPU VRAM and can even run 
efficiently on CPU. Our implementation of GDC Cohort 
Copilot allows it to be accessible to a wide variety of biomed
ical research users.

3 Results
We first evaluate the adaptability of various model types to 
our filter generation task as GDC Cohort LLM (Table 4, 
available as supplementary data at Bioinformatics Advances 
online). Training over user-derived data, we find that GPT-2 
(TPR¼0.365; IoU¼ 0.331; Exact¼0.221) significantly out
performs BART (TPR¼0.117, P¼ 8.56e−89; IoU¼0.078, 
P¼ 7.73e−114; Exact¼0.028, P¼ 3.69e−94) and Mistral 
(TPR¼0.124, P¼2.33e−90; IoU¼ 0.117, P¼ 3.62e−80; 
Exact¼0.092, P¼9.35e−39) models over case-retrieval met
rics. Over query-based metrics, GPT-2 (BERT¼ 0.819) out
performs BART (BERT¼0.735, P¼ 4.03e−106). While 
GPT-2 is statistically worse than Mistral (BERT¼0.835, 
P¼ 6.47e−5), the difference is relatively small and not mean
ingful in the context of poor case-retrieval capabilities.

Given GPT-2’s strong adaptability to GDC Cohort LLM, 
we next explore how to improve its performance by training 
over synthetic data mixtures (Table 5, available as supple
mentary data at Bioinformatics Advances online). We find 
that, compared to a baseline using only user-derived data 
(TPR¼0.365; IoU¼0.331; Exact¼0.221; BERT¼ 0.819), 
incorporating 100 000 synthetically generated records with 
our real user data (TPR¼ 0.783, P¼9.59e−217; 
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IoU¼0.748, P¼ 7.19e−227; Exact¼0.607, P¼ 1.00e−188; 
BERT¼ 0.902, P¼7.67e−145) significantly improves all 
metrics. We further train over a mixture of 1 million synthetic 
records with user records and find that this provides signifi
cantly stronger results (TPR¼0.855, P¼6.03e−18; 
IoU¼0.832, P¼1.85e−23; Exact¼0.702, P¼1.20e−23; 
BERT¼ 0.919, P¼ 3.74e−16) than using only 100 thousand 
synthetic samples.

Our final GDC Cohort LLM model is thus trained from a 
GPT-2 foundation over a mixture of 1 million synthetic and 
real user data. Importantly, GDC Cohort LLM 
(TPR¼ 0.855; IoU¼ 0.832; Exact¼ 0.702; BERT¼0.919) 
significantly outperforms a prompting-based implementation 
of cohort filter generation using GPT-4o (TPR¼0.720, 
P¼ 8.01e−37; IoU¼0.748, P¼2.08e−36; Exact¼0.607, 
P¼ 2.12e−37; BERT¼ 0.894, P¼3.57e−26) across all met
rics (Table 1). Because GDC Cohort LLM is specifically 
trained for this task, to provide a more fair comparison, we 
prompt GPT-4o with a list of all possible field-value pairs 
which consume 15K tokens. This reduces the potential for 
GPT-4o to hallucinate invalid field or value names. Despite 
this, we find that our open-source, small-scale GDC Cohort 
LLM model achieves better results than GPT-4o. We concep
tually compare GDC Cohort LLM to GPT-4o in Table 2.

We note that the evaluation presented in Table 1 utilizes 
LLM generated queries for real user-generated filters. As 
LLM generated text tends to be verbose and less natural than 
human written text (Saito et al. 2023, Briakou et al. 2024), 
we further evaluate GDC Cohort LLM and GPT-4o on a sub
set of N¼200 manually written, less verbose queries (de
scribed in Section 2.3.1). We find that when using manually 
written queries, GDC Cohort LLM and GPT-4o are not sig
nificantly different (Table 3), despite GDC Cohort LLM be
ing orders of magnitude more efficient (Table 2).

Finally, we package GDC Cohort LLM with our GDC 
Cohort Copilot tool as a containerized Gradio app running 
on HuggingFace Spaces. GDC Cohort Copilot can addition
ally be downloaded and run locally using docker. We serve a 
GDC Cohort Builder-like interface to allow users to interac
tively curate cohorts using both natural language based 
descriptions and graphical checkboxes. We integrate with 
NCI GDC by providing utilities to export curated cohorts 
back to the GDC for further analysis.

3.1 Limitations
While we aim to provide a helpful tool to new users of the 
GDC, we note key limitations in this initial study. First, while 
we utilize the core set of filter properties (Section 2.2) that are 
the default filters shown in the GDC Data Portal, there are 
�700 total filter properties available in the GDC. Indeed, these 
hidden-by-default filters are likely even more difficult for a new 
user to find and so future work will expand the GDC Cohort 

Copilot to these filter properties. Next, we note that in our ex
periment utilizing human written queries for human generated 
cohort filters (Table 3), the writer of the query and cohort filter 
are separate individuals. This is again a limitation of the dataset 
(Section 2.3.1), where the result may be that the intent of the 
original user who generated the filter may not have been accu
rately captured by the manual annotator who wrote the free- 
text query. Lastly, we nonetheless observe that over manually 
written queries, model performance on filter generation 
degrades when compared to using LLM written queries. It is ac
tive, ongoing work to further improve the model, however, we 
emphasize that no model will ever be perfect. We therefore 
designed the GDC Cohort Copilot tool as not only the model, 
but also the interactive interface that allows a user to dynami
cally refine the generated cohort filter. In this way, the GDC 
Cohort Copilot is a collaborative AI tool.

4 Conclusion
GDC Cohort Copilot is a novel copilot tool to use natural lan
guage to assist in the curation of cohorts from the NCI GDC. 
Users can interactively use the copilot and a graphical interface 
to discover and refine their cohort. We experiment with various 
model types and data mixtures to develop GDC Cohort LLM, 
and demonstrate that our open-source, small-scale model is bet
ter able to accurately translate natural language descriptions of 
cohorts into their corresponding GDC cohort filter. We share 
GDC Cohort Copilot as a containerized Gradio app deployed on 
HuggingFace Spaces, ultimately providing an accessible tool to 
aid biomedical cancer researchers in their data curation efforts.
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Table 1. GDC Cohort LLM is significantly better at generating GDC 
cohorts across all reported metrics compared to GPT-4o (P <:05).a

Model TPR IoU Exact BERT

GDC Cohort LLM 0.855 0.832 0.702 0.919
GPT-4o 0.720 0.698 0.558 0.894

a Significantly better results are bolded. TPR: true positive rate; IoU: 
intersection over union; Exact: exact match; BERT: F1 BERTScore 
using SciBERT.

Table 2. Conceptual comparison of GDC Cohort LLM and GPT-4o as 
LLMs to power GDC Cohort Copilot.

Comparison GDC Cohort LLM GPT-4o

Achieves SOTA ✓ ✗

Open source ✓ ✗

Deploy locally ✓ ✗

Runs on CPU-only ✓ ✗

Structured outputs ✓ ✓

No training ✗ ✓

Required tokens ≤1024 >15k

Table 3. In GDC cohort filter generation on a subset of 200 evaluation 
samples, GDC Cohort LLM still outperforms GPT-4o when using model 
generated queries (P <:05). However, GDC Cohort LLM is not 
significantly different than GPT-4o when using manually written queries 
(P >:05), yet remains orders of magnitude more 
computationally efficient.a

Queries Model TPR IoU Exact BERT

Synthetic GDC Cohort LLM 0.919 0.887 0.780 0.933
GPT-4o 0.720 0.718 0.585 0.899

Manual GDC Cohort LLM 0.711 0.665 0.520 0.762
GPT-4o 0.736 0.707 0.500 0.755

a Significantly better results are bolded. TPR: true positive rate; IoU: 
intersection over union; Exact: exact match; BERT: F1 BERTScore 
using SciBERT.
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