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Abstract
Interoperability between data sources, one of the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles 
for scientific data management, can enable multi-modality research. The purpose of our study was to investigate the potential 
for interoperability between an imaging resource, the Medical Imaging and Data Resource Center (MIDRC), and a clinical 
record resource, the National COVID Cohort Collaborative (N3C). The use case was the prediction of COVID-19 severity, 
defined as evidence for invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice 
in the N3C clinical record. Patient-level matching between MIDRC and N3C was identified using Privacy Preserving Record 
Linking via an honest broker. We identified positive COVID-19 tests and chest radiograph procedures in N3C and used 
the interval between them to identify images with matching intervals in MIDRC. Of the 236 patients (306 unique images) 
meeting initial inclusion criteria in MIDRC, 117 patients (and 139 unique images) remained after date interval matching 
between repositories and exclusion of patients with multiple potential matches. The Charlson Comorbidity Index (CCI) and 
the minimum mean arterial pressure (MAP) on the day of the chest radiograph were used as clinical indicators. The AUC in 
the task of predicting severe COVID-19 was evaluated using the computer-extracted imaging index alone (MIDRC), clini-
cal indicators alone (N3C), and both together. Our model combining imaging and clinical indicators (CCI over 2 and MAP 
below 70) to predict severe COVID had an AUC of 0.73 (95% CI 0.62–0.84), and the models including imaging or clinical 
indicators alone were 0.67 (95% CI 0.56–0.79) and 0.69 (95% CI 0.59–0.80), respectively. This study highlights the potential 
for cross-platform data sharing to facilitate future multi-modality research and broader collaborative studies.
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Introduction

Data commons and repositories are an important resource 
for big-data analysis that can lead to advances in medicine. 
They have the potential to contribute multi-modal data, 

bringing together data derived from medical images and 
from clinical records. The National Institutes of Health 
(NIH) launched several data initiatives in response to the 
coronavirus-19 (COVID-19) pandemic, including the Medi-
cal Imaging and Data Resource Center (MIDRC) [1] and 
the National COVID Cohort Collaborative (N3C) [2]. These 
massive data resources have the potential to support retro-
spective evaluation of data that can then serve as use cases 
for future medical advancements, including use of artificial 
intelligence and machine learning methods [3].

Interoperability between data resources can be par-
ticularly high impact for medicine [4, 5] and is part of 
the FAIR [6] principles for data (Findability, Accessibil-
ity, Interoperability, and Reusability). In the context of 
FAIR, interoperability is defined as “the ability of data or 
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tools from non-cooperating resources to integrate or work 
together with minimal effort” [6]. Governance models, 
which oversee data ingestion, storage, maintenance, and 
disposal, have a substantial influence on interoperability 
[5]. Challenges for data interoperability for COVID-19 
research were identified early on in the pandemic [7] and 
addressing them has been an ongoing area of effort, for 
purposes such as integrating genomic and clinical data 
[8] and vaccine response data [9]. A recent review high-
lighted the lack of interoperable datasets for COVID-19, 
especially for imaging-related data [10].

MIDRC and N3C operate under two different data pri-
vacy governance models. Images in the open MIDRC data 
commons are fully de-identified during the ingestion pro-
cess. The MIDRC de-identification process includes ran-
domly shifting dates while maintaining the relative sequence 
of events for each patient, ensuring the integrity of their 
longitudinal timeline. This means that only relative data 
with respect to imaging exam dates are available, such as 
the interval between imaging acquisition and an associated 
measurement (such as a COVID-19 test). On the other hand, 
data in N3C exist as a Limited Dataset [11, 12], which means 
that actual dates are associated with patients (e.g., dates of 
imaging procedures and dates of laboratory tests). Integrat-
ing imaging data from MIDRC and clinical data from N3C 
requires coordination and collaboration between the two 

data resources via an honest broker [13] to accurately match 
patients, align dates, and achieve interoperability capabilities 
that may enhance the use of each dataset (Fig. 1).

The purpose of our study was to demonstrate the inter-
operability between MIDRC and N3C via a use case of 
predicting severe outcomes for COVID-19 patients. We 
describe the logistics needed for the interoperability use 
case as well as example models. Three measures of predict-
ing severe outcomes were investigated: (a) a previously-
published computer-extracted measure using imaging alone 
(using images from MIDRC), (b) a measure derived from 
the clinical record alone (using data from N3C), and (c) a 
measure that combined data from both (i.e., imaging + clini-
cal data).

Materials and Methods

Study Population

Privacy-preserving software services were established 
between MIDRC, N3C, and the honest broker at Regen-
strief Institute [14]. Regenstrief acted as the honest bro-
ker for both MIDRC and N3C. When a MIDRC Globally 
Unique Identifier (“MIDRC ID”), which is privacy pre-
serving, was passed to Regenstrief via a MIDRC Gen3 

Fig. 1   Conceptual overview 
of interoperability between 
MIDRC and N3C
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data mesh service (gen3.org), Regenstrief, as the honest 
broker, could perform a match to see if there was match-
ing data within N3C. If N3C passed an N3C Identifier 
(“N3C ID”) to Regenstrief, Regenstrief could perform a 
match and return privacy-preserving MIDRC IDs to N3C. 
Due to the sensitivity of the data and the agreements used 
to collect the data, in all cases, N3C data (including N3C 
patient IDs) never left its secure enclave. The matched 
and integrated data was always analyzed within the N3C 
secure enclave, which is approved to manage controlled 
access data and authorized to interoperate with MIDRC 
[15]. With these services, a study population of subjects 
with data in both MIDRC (identified with a MIDRC ID) 
and N3C (identified with a N3C ID) was created. For 
these patients, the following steps were taken.

Imaging Index from Images in MIDRC

Unique de-identified patient MIDRC IDs were down-
loaded from N3C via a data download request. These 
MIDRC IDs were used to query the MIDRC open data 
commons for imaging studies relevant for this work 
according to two stages of inclusion criteria: (a) chest 
radiographs that were acquired no later than 7 days from a 
positive COVID-19 test result (“C19 + test result”) and (b) 
acquired in anterior–posterior view. A computer-extracted 
imaging-derived measure of COVID-19 severity was 
determined for each chest radiograph using a previously 
published deep learning model [16] that was developed 
to predict the development of severe COVID-19 within 
24 h of the C19 + test result. The model uses a sequen-
tial learning framework that was successively trained in 
four phases; full technical details can be reviewed at the 
original publication [16]. In that study, severe COVID-19 
was defined as patient admission to intensive care and/
or evidence of intubation from the clinical record. Using 
the existing algorithm, the “imaging index” was gener-
ated for each eligible chest radiograph. Note that in the 
present study, severe COVID-19 was defined differently, 
as described below. Thus, the imaging index served as 
a surrogate measure of severe COVID-19 for this study. 

Note that because the focus of this study is to demonstrate 
interoperability and an existing algorithm was used, this 
study did not develop, train, or validate a new imaging-
based algorithm to predict COVID-19 severity.

Matching of the Specific Imaging Exam (MIDRC) 
and Specific Clinical Procedures (N3C)

To match data between MIDRC and N3C, the time interval 
between a patient’s positive C19 + test and a chest radio-
graph procedure in N3C was calculated and matched exactly 
to the MIDRC interval. Patients were excluded if there 
was no exact matching date interval, either due to missing 
C19 + test results, missing a documented chest radiograph 
procedure, or the time interval between the two in N3C 
did not match the time interval in MIDRC. Because some 
patients had multiple C19 + tests and chest radiograph pro-
cedures recorded in N3C, the patient cohort was separated 
into subcohorts based upon the number of imaging stud-
ies available in MIDRC, the number of intervals between a 
C19 + test and imaging studies in MIDRC, and the number 
of matching intervals between a C19 + test and image proce-
dure in N3C (Table 1). Patients with one imaging study, one 
interval between C19 + test and imaging study in MIDRC, 
and one matching interval within N3C were used in the final 
cohort.

Clinical Indicators from Data in N3C

Within N3C, the Charlson Comorbidity Index (CCI) [17, 18] 
at the admission date of the associated hospitalization and 
the minimum mean arterial pressure (MAP) on the day of 
the chest radiograph recorded in N3C were used as the clini-
cal indicators in modeling. These indicators were identified 
for their use in other studies of COVID-19 outcomes using 
data from N3C [19–22]. The CCI was determined using 
the CCI Logic Liaison template available within the N3C 
enclave. For each chest radiograph, the patient’s CCI was 
classified into two categories: (a) CCI score between 0 and 
2 and (b) CCI score 3 or greater. The minimum MAP was 
classified as either low (< 70) or not low (≥ 70) [23].

Table 1   Subcohorts identified through combinations of imaging studies in MIDRC and number of intervals between COVID-19 tests in MIDRC 
and in N3C. Patients in Subcohort 1 were used in the final analysis of this study. C19 +, COVID-19 positive

Sub cohort Number of imaging studies 
in MIDRC

Number of intervals between C19 + test and 
imaging studies in MIDRC

Number of intervals between C19 + test and 
image procedure in N3C

1 One imaging study One interval One matching interval
2 One imaging study One interval One matching interval on multiple calendar days
3 One imaging study Multiple intervals Multiple matching intervals



	 Journal of Imaging Informatics in Medicine

Predictive Models for Severe COVID‑19

Three predictive models for severe COVID-19 were evalu-
ated for their potential to demonstrate interoperability 
between MIDRC and N3C: (a) using the radiographic AI-
predictive model (imaging index alone), (b) using clinical 
indicators alone, and (c) using the combination of the imag-
ing index and clinical indicators. In the present study, severe 
COVID-19 was defined as evidence for invasive ventilatory 
support, extracorporeal membrane oxygenation, death, or 
discharge to hospice [22] included within the clinical record 
held at N3C via the invasive respiratory support Logic Liai-
son template available within the N3C enclave. A logistic 
regression model was used to predict severe COVID-19, 
and standard errors were calculated at the patient level to 
account for multiple images within one imaging study (i.e., 
clustered data).

Statistical Analysis

The odds ratio for the factors in each logistic model were 
determined, along with their 95% confidence intervals (CI) 
using standard errors for clustered data to account for multi-
ple images in one imaging exam for some patients. Specifi-
cally, we applied the Huber-White (HC0) sandwich estima-
tor with clustering at the individual level to obtain standard 
errors using the Imtest R package [24]. The imaging index 
ranges from 0 to 1 and was represented in the model as 
tenths (0.1 units), so that the odds ratio represents the dif-
ference in odds of severe COVID-19 associated with a 0.1 
unit change in the index. Receiver operating characteristic 
(ROC) analysis [25] was conducted in the task of predicting 
severe COVID-19. The area under the ROC curve (AUC) 
and 95% CIs were determined empirically using the R pROC 
package [26] for each of the three predictive models and 
served as the figure of merit.

Fig. 2   Consort figure of patients 
included in the study
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Results

Study Population Characteristics

The final data set included 139 unique images from 121 
imaging studies of 117 patients that had chest radiographs 
between June 3, 2020, and April 24, 2023. The consort fig-
ure for the inclusion criteria in the study is shown in Fig. 2.

Of the 139 images, 22 (15.83%) were associated with 
severe COVID, 62 (44.60%) had a CCI of 3 or greater, and 
the median minimum MAP was 78.30 [IQR 69.17, 89.75] 
(Table 2). The cohort was primarily Black (105, 75.54%) 
and male (78, 56.12%) and had a median age of 60 [IQR 
47.50, 74].

Statistical Analysis

In the model predicting severe COVID-19 using only the 
imaging index, there was an estimated odds ratio of 1.19 per 
tenth imaging unit (95% CI 1.00–1.42), indicating a mar-
ginal association with greater odds of severe COVID-10. 
In the model using only clinical indicators (CCI over 2 and 
MAP below 70), the odds ratio for severe COVID-19 was 
4.94 (95% CI 0.95–25.56) for a high CCI and 0.61 (95% 
CI 0.19–1.98) for low MAP. When the imaging index and 
clinical indicators were combined, odds ratios for all factors 
remained similar, though none reached statistical significance 
at the 0.05 level. However, these results should be interpreted 
with caution, as the study is underpowered to detect signifi-
cant associations. Regression results are shown in Table 3.

The AUC in the task of predicting severe COVID-19 
using the imaging index alone was 0.67 (95% CI 0.56–0.79), 
and using clinical indicators (CCI over 2 and MAP below 

Table 2   Patient characteristics in the cohort used in this study (by 
image)

Severe COVID-19 was identified for patients who had any clinical 
indicator

Characteristic N (%) or median [IQR]

Demographics
  Race/ethnicity
    Black not Hispanic 105 (75.54)
    Hispanic or Latino  < 20
    White not Hispanic or Latino  < 20
    Asian not Hispanic or Latino  < 20
    Other race not Hispanic or Latino  < 20
  Sex
    Male 78 (56.12)
    Female 61 (43.88)
  Age, median [IQR] 60 [47.5, 74]

Clinical indicators
  CCI category
    0–2 77 (55.40)
    3 +  62 (44.60)
  Low MAP (< 70) 36 (25.90)

Imaging indicator
  Image index, median [IQR] 0.24 [0.04, 0.62]

Outcomes
  Severe COVID-19 22 (15.83)

Table 3   Regression results 
for the prediction of severe 
COVID-19 using the imaging 
index alone and the clinical 
indicators. CCI, Charlson 
comorbidity index; MAP, mean 
arterial pressure; OR, odds 
ratio; CI, confidence interval

The regression factors for the imaging index were multiplied by 10 to support interpretability, such that the 
OR is associated with an increase in the imaging index of 0.1

Model 1: Imaging index 
alone

Model 2: Clinical indica-
tors alone

Model 3: imaging 
index + clinical indica-
tors

OR 95% CI OR 95% CI OR 95% CI

Imaging index 1.19 (1.00, 1.42) - - 1.12 (0.95, 1.32)
CCI: 3 +  - - 4.94 (0.95, 25.56) 3.89 (0.77, 19.73)
Minimum MAP: < 70 - - 0.61 (0.19, 1.98) 0.61 (0.18, 2.02)

Fig. 3   Receiver operating characteristic curves in the task of predict-
ing severe COVID-19 from imaging index alone, clinical indicators 
alone, or the combination of imaging index and clinical indicators. 
AUC, area under the receiver operating characteristic curve
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70) alone was 0.69 (95% CI 0.59–0.80). The model combin-
ing imaging and clinical indicators to predict severe COVID 
had a greater median AUC (0.73, 95% CI 0.62–0.84) than 
the models including imaging or clinical indicators alone. 
ROC curves for the three models are shown in Fig. 3.

Discussion

Interoperability between different data repositories allows 
matching different types of data available for the same 
patient and plays a critical role in realizing the great poten-
tial of multimodal data analysis to improve healthcare. In 
particular, data commons interoperability enables curation 
of multimodal datasets that are foundational for the devel-
opment of data-fusion AI, which has emerged as a prom-
ising technology to combine multiple types of data (e.g., 
radiology, pathology, clinical lab measurements, genom-
ics) in various clinical tasks. In this study, interoperability 
between MIDRC (imaging data) and N3C (clinical data) 
has been demonstrated for the use case of prediction of 
severe COVID-19 using three predictive models. Two of 
them used the data from each repository alone and one 
used it in combination, the latter specifically facilitated 
by interoperability coordination efforts. The results dem-
onstrate the potential for future discovery and hypothesis-
driven studies, such as optimizing clinical data used for 
the task and subcohort analysis, or using other summary 
measures of comorbidity (such as the Elixhauser [27, 28] 
or Quan-Charlson indices [29]).

Limitations of this study included that the interoperabil-
ity demonstration incorporated somewhat ad hoc choices 
for the intervals between C19 + test and imaging and for 
the clinical data windows used. During the development of 
the study, we reviewed the data and saw negligible change 
in, e.g., the CCI if the window was different. However, 
other studies may be more sensitive and may need to rely 
on more strict definitions of intervals. We also limited the 
study to straightforward matches in interval between imag-
ing and clinical variables in order to simplify the demon-
stration of interoperability. In the future, more improve-
ments are needed for series-based matches (as opposed 
to image-based matches, which was the focus here). The 
interval check was not optimal but was what was possi-
ble now because of date shifting (including potentially 
unknown date shifting between two commons). This limi-
tation impacted the size of the final dataset, which limited 
the power to detect statistical significance. Expansion of 
interoperability will allow for research on larger cohorts 
by increasing the confidence in the matching of imaging 
data in MIDRC to clinical data in N3C.

The comparison of models was also limited in terms of 
statistical power due to the small sample size. Nonetheless, 

there was evidence of effects worth exploring with a larger 
case series. Different interoperability procedures are needed 
to expand the dataset to additional patients and to extend 
the analysis to other subcohorts. Thus, this work shows the 
potential for interoperability and future hypothesis-driven 
work, including at specific operating points.

Conclusion

Interoperability between MIDRC and N3C has been demon-
strated for the first time via the use case of predicting severe 
COVID-19 by combining both imaging-derived measures 
and data from the clinical record. Future work will inves-
tigate the incorporation of other clinical indicators and use 
tasks as well as an in-depth evaluation of how integrating 
imaging and clinical data improves clinical decision-making 
in this task and other tasks.
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