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Interoperability (the ability of data or tools from non-cooperating resources to integrate or work 
together with minimal effort) is particularly important for curation of multimodal datasets from 
multiple data sources. The Medical Imaging and Data Resource Center (MIDRC), a multi-institutional 
collaborative initiative to collect, curate, and share medical imaging datasets, has made interoperability 
with other data commons one of its top priorities. The purpose of this study was to demonstrate the 
interoperability between MIDRC and two other data repositories, BioData Catalyst (BDC) and National 
Clinical Cohort Collaborative (N3C). Using interoperability capabilities of the data repositories, we built 
two cohorts for example use cases, with each containing clinical and imaging data on matched patients. 
The representativeness of the cohorts is characterized by comparing with CDC population statistics 
using the Jensen-Shannon distance. The process and methods of interoperability demonstrated in this 
work can be utilized by MIDRC, BDC, and N3C users to create multimodal datasets for development of 
artificial intelligence/machine learning models.

Introduction
Multimodal data integration of radiological and histological imaging, clinical data, and molecular diagnos-
tics has the potential to advance medicine beyond the current standard of care1. Artificial intelligence (AI), 
machine learning (ML), and big-data analytic technologies are expected to play a critical role in this advance-
ment, yet these techniques are data hungry and require large amounts of multimodal data to train and validate 
AI/ML models2. Fortunately, there are now many data commons and repositories that are publicly avail-
able thanks to significant efforts by many organizations including the National Institutes of Health (NIH)3, 
which has supported several repositories, such as The Cancer Imaging Archive (TCIA, https://www.cancer-
imagingarchive.net/)4,5, The Imaging Data Commons (IDC, https://datacommons.cancer.gov/repository/
imaging-data-commons)6, the National Clinical Cohort Collaborative (N3C, https://ncats.nih.gov/research/
research-activities/n3c/overview)7, the BioData Catalyst (https://biodatacatalyst.nhlbi.nih.gov/)8, The Database 
of Genotypes and Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/gap/)9,10, and the Medical Imaging and 
Data Resource Center (MIDRC, https://data.midrc.org/)11. Each was initiated and sustained for different pur-
poses. Some, like TCIA, IDC, and MIDRC, contain de-identified medical images. Others, such N3C and dbGaP, 
contain medical record information related to medical images, such as clinical measurements taken near or at 
the time of imaging. The theme of this paper is the interoperability of different data commons with MIDRC.
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Interoperability is one of the key guiding principles for scientific data management and stewardship outlined 
in the FAIR principles (Findability, Accessibility, Interoperability, and Reusability), in which interoperability is 
defined as “the ability of data or tools from non-cooperating resources to integrate or work together with mini-
mal effort”12. To be interoperable, according to the FAIR principles, the following must be true:
•	 The (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge 

representation.
•	 The (meta)data use vocabularies that follow FAIR principles.
•	 The (meta)data include qualified references to other (meta)data.

The importance of interoperability in digital healthcare systems has been well recognized. Lehne et al.13 
stressed the importance of interoperability for AI and big-data analytics, medical communication, medical 
research, and international cooperation. Perlin14 emphasized the central role of interoperability in realizing 
the economic and clinical benefits of big data. The authors14 suggested improving patient identification and 
data matching as one of the priorities in advancing health information technology interoperability, as errors in 
patient data matching can result in suboptimal care and medical errors.

Despite its well-recognized value, interoperability has not been commonly implemented in practice due 
to both technical and governance challenges. Lack of interoperability has resulted in isolated data silos and 
incompatible systems that prevented the linking of data from multiple sources, which is particularly critical 
in multimodal data applications where data are scarce. Intentional interoperability efforts are needed to create 
multimodal datasets to address this scarcity.

MIDRC is a multi-institutional collaborative initiative driven by the medical imaging community that was 
initiated in late summer 2020 to help combat the global COVID-19 health emergency. Leveraging the exist-
ing and developing infrastructure provided by the participating organizations, MIDRC serves as a linked-data 
commons that coordinates access to data and harmonizes data management activities. MIDRC was designed 
to follow the FAIR principles, including interoperability. Now, MIDRC continues to expand with data ingestion 
of imaging studies acquired for diseases beyond COVID-19 such as oncology. Since its inception, MIDRC has 
also fostered FAIR principles by hosting a simple-to-use data portal (http://data.midrc.org) for exploration and 
cohort building, by sharing data as well as associated algorithms openly and freely.

The purpose of this study was to demonstrate the interoperability between MIDRC and two other data repos-
itories, BioData Catalyst (BDC, Fig. 1) and N3C (Fig. 2) by describing the datasets that result from interopera-
bility efforts between these repositories. The focus was to create cohorts for two example use cases: (1) a cohort 
for multi-omics association studies and data fusion (demonstrated on BDC) and (2) a cohort for developing AI 
computer vision models for medical images (demonstrated on N3C).

Results
We developed methods of interoperability between MIDRC and BDC and between MIDRC and N3C (see 
“Methods” for details) and used these methods to curate two multimodal datasets. The first dataset, the 
Repository of Electronic Data COVID-19 Observational Study (RED CORAL, https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs002363.v1.p1, dbGaP Study Accession: phs002363.v1.p1) dataset15, 
was collected by the Prevention and Early Treatment of Acute Lung Injury (PETAL) Network for investigation of 
demographics, clinical characteristics, risk factors, care practices, outcomes and resource utilization of patients 
hospitalized with severe acute COVID-19. The clinical data of RED CORAL (demographics, laboratory test 
results, medical history and blood pressure tests) is hosted by BDC with 1,480 unique patients and the imaging 
data is hosted by MIDRC. Via interoperability, we identified 1,477 unique patients with matches between BDC 
and MIDRC, with 1,223 patients having images acquired March1 to April 1, 2020 that are currently hosted on 
MIDRC. The images include chest X-ray images for 1,200 patients and chest CT images for 226 patients. Table 1 
summarizes the clinical and demographic characteristics of the dataset of 1,223 unique patients with matches 
between BDC and MIDRC.

The second dataset, the National Clinical Cohort Collaborative (N3C)7, is a collection of data from over 80 
institutions originally created to expand knowledge and treatment of COVID-19. N3C holds a wide range of 
clinical data, including clinical observations, lab results, medication records, procedure descriptions, and visits. 
As of March 2024, N3C holds data for 22.1 million unique persons, including over 8.7 million COVID-19 pos-
itive cases. Via interoperability, we identified 2,124 unique patients with matches between N3C and MIDRC, 
with images having been acquired between March 2020 and June 2021. Table 2 summarizes the demographic 
information of the patients in the matched dataset of 2,124 unique patients. Additional patient characteristics 
including history of COVID and smoking status were identified using the N3C Logic Liaison tools which serve 
as value sets that map concepts with values (https://covid.cd2h.org/dashboard/concept-sets).

In order to measure the representativeness of the cohorts to the actual COVID-19 positive patient popula-
tions, we used the Jensen-Shannon Distance (JSD) metric16 to characterize the representativeness of the specific 
datasets relative to cumulative COVID-19 positive patient case counts from the Centers for Disease Control and 
Prevention (CDC)17 (Tables 3–5). Measuring representativeness enables user to assess how similar patients in 
the data subset are to the broader population, and the JSD provides a summary measure that takes into account 
multiple subgroups. The JSD indicated varying levels of difference in the similarity of the patient demographics 
in RED CORAL for which imaging data exists in MIDRC and the patients in N3C for which imaging data exists 
in MIDRC, compared to the cumulative COVID-19 positive patient case counts (Fig. 3). It appears that the two 
datasets represent the patient population (as defined by the CDC statistics) well in terms of sex distributions 
with both JSD values below 0.2. In contrast, the raw JSD values for race and ethnicity distributions are in the 
range of 0.45–0.6 for both datasets, and the race JSD value for the N3C dataset is still above 0.5 after adjustment 
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assuming missing at random. A close examination of the race distributions indicates substantial difference 
between the curated MIDRC-N3C overlapping subset and the CDC population statistics. For example, the Black 
and White subpopulations occupy 76.3% and 15.9% respectively in the N3C dataset whereas the corresponding 
figures in the CDC population are 8.9% and 46.1% (or 15.1% and 78.6% respectively after adjustment for missing 
at random). Such a characterization has important implications in the development and assessment of AI/ML 
models. Subgroup analysis would be necessary to examine the effect of the mismatch and mitigation may be 
necessary to avoid biased performance18 on the two subgroups.

Discussion
The curation of these datasets was conducted with the goal of demonstrating interoperability between data 
repositories funded and created with separate mechanisms and aims. Through collaboration and cooperation 
between governance organizations, the datasets demonstrate the potential gains that can be made through mul-
timodal research by identifying cohorts of patients with data held at different repositories. Such multimodal 
datasets may enrich research initiatives, with the potential for greater information compared to using single 
modality datasets on their own.

The multimodal data interoperability sets described here were intentionally crafted using FAIR principles, 
which notably include the goal of “minimal effort.” One outstanding factor in interoperability between these 

Fig. 1  Overview of interoperability between MIDRC and BioData Catalyst. Relative sizes of the datasets are not 
shown to scale.

Fig. 2  Overview of interoperability between MIDRC and N3C. Relative sizes of the datasets are not shown  
to scale.
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Number of patients N = 2124

Age (years)* (Standard Deviation) 57.65 ± 25.99

Sex*
Female 1141 (53.7%)

Male 983 (46.3%)

Smoking†

False 1414 (66.6%)

True 212 (10.0%)

Unknown 498 (23.4%)

COVID severity†
False 1825 (85.9%) (No clinical record evidence of COVID-19 related 

ECMO or invasive ventilation)

True 299 (14.1%) (Ever received COVID-19 related ECMO or invasive 
ventilation)

Ethnicity*

Not Hispanic or Latino 1968 (92.7%)

Hispanic or Latino 132 (6.2%)

Not reported 24 (1.1%)

Race*

American Indian or Alaska Native <20 (<1%)

Asian 26 (1.2%)

Black or African American 1620 (76.3%)

Native Hawaiian or Other Pacific Islander <20 (<1%)

White 338 (15.9%)

Not reported 134 (6.3%)

Table 2.  Characteristics of patients with clinical data in N3C matched with imaging data in MIDRC. *Patient 
characteristics in the matching MIDRC-N3C dataset as recorded in MIDRC. †Patient characteristics in the 
matching MIDRC-N3C dataset as of 30 May 2024 as recorded in N3C. Smoker status was identified from the 
Covid-19 Patient Summary Facts Table Logic Liaison available at N3C via variable TOBACCOSMOKER_
before_or_day_of_covid_indicator. Note that the smoker status as determined from the Covid-19 Patient 
Summary Facts Table Logic Liaison does not differentiate between current or former tobacco use. COVID 
severity status was identified from the Invasive Respiratory Support Logic Liaison available at N3C, which is 
determined from the following datasets: critical_covid_ecmo_by_procedure, critical_covid_invasive_vent_by_
observation, critical_covid_invasive_vent_by_condition, critical_covid_inasive_vent_by_procedure.

Number of patients N = 1223

Age(years) (Standard Deviation) 60.55 ± 16.33

Sex

Female 539 (44.1%)

Male 680 (55.6%)

Missing 4 (0.4%)

Smoking

Never 764 (62.5%)

Former 338 (27.6%)

Current 53 (4.3%)

Missing 68(5.6%)

COVID severity

Not ICU 719 (58.8%)

ICU 500 (40.9%)

Missing 4 (0.3%)

Ethnicity

Not Hispanic or Latino 933 (76.3%)

Hispanic or Latino 208 (17.0%)

Unknown 78 (6.4%)

Missing 4 (0.3%)

Race

American Indian or Alaska Native 0 (0.0%)

Asian 61 (5.0%)

Black or African American 373 (30.5%)

Native Hawaiian or Other Pacific Islander 0 (0.0%)

White 589 (48.2%)

Multiple 10 (0.8%)

Other 145 (11.9%)

Not reported 41 (3.4%)

Missing 4 (0.3%)

Table 1.  Characteristics of patients in the RED CORAL dataset with clinical data in BDC matched with 
imaging data in MIDRC.
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repositories that increases the amount of effort for interoperability is the differences in governance systems. By 
design, the data held in MIDRC undergoes extensive de-identification as they are ingested and thus are freely 
available to all who register for access. In contrast, N3C places restrictions on data access, does not allow data 
download, and requires an application process for data uploads, due to the nature of the controlled data it holds. 
This means that users who wish to interoperate between the two repositories are limited to using N3C as the 
computational enclave for interacting with the connected data. On the other hand, BDC users can download and 
compute on the data locally (on their own computer or cloud-based computational spaces) after authorization 
is granted by dbGaP, and then can access the data during the active period of the authorized project follow-
ing a Data Use Certification Agreement, which specifies terms such as “for research use”, user responsibilities, 
non-identification, and so on. It takes considerable administrative efforts to implement interoperability due 
to the differences in governance systems. Technologically, interoperability between MIDRC and BDC can be 
automated to a large extent; for this use case, matching of data and linking of identifiers across the two reposito-
ries leveraged the Gen3 crosswalk service. However, as implemented here, the Gen3 crosswalk service was not 
totally automatic because the governance of the two data commons is different. It is possible that early planning 
of coordination between data repositories with different governance models could broaden the availability of 
multimodal data through interoperability, reducing time and effort needed.

In the future, interoperability among the many data commons may be facilitated by further development 
and adoption of multimodal healthcare data standards, which refer to “methods, protocols, terminologies, and 

Time period Female Male Not reported

March 2020 (Nc = 381,963) 45.3% (50.1%) 45.2% (49.9%) 9.6%

March 2020 – June 2021 (Nc = 248,769,785) 50.3% (52.4%) 45.7% (47.6%) 4.1%

Table 3.  Proportion of COVID-19 positive case counts by sex calculated based on CDC data over the 
comparison periods used in this study. Nc: Number of counts reported by the CDC. Reported as % from raw 
data (% after adjustment assuming data missing at random). Percentages may not add to 100% due to rounding. 
Note that the CDC data represent individual tests reported to the CDC.

Time period Hispanic or Latino Not Hispanic or Latino Not reported

March 2020 8.1% (17.8%) 37.4% (82.2%) 54.5%

March 2020 – June 2021 11.6% (21.6%) 42.3% (78.4%) 46.0%

Table 5.  Proportion of COVID-19 positive case counts by ethnicity over the comparison periods used in this 
study calculated based on CDC data. Reported as % from raw data (% after adjustment for data missing at 
random). Percentages may not add to 100% due to rounding.

Time period
American Indian or 
Alaska Native Asian Black

Native Hawaiian or 
Other Pacific Islander White Multiple or Other Not reported

March 2020 0.07% (0.15%) 2.5% (4.9%) 14.8% (29.6%) 0.012% (0.02%) 32.3% (64.4%) 0.47% (0.93%) 50.0%

March 2020 – June 2021 0.61% (1.0%) 2.1% (3.6%) 8.9% (15.1%) 0.075% (0.13%) 46.1% (78.6%) 0.9% (1.5%) 41.4%

Table 4.  Proportion of COVID-19 positive case counts by race over the comparison periods used in this study 
calculated based on CDC data. Reported as % from raw data (% after adjustment for data missing at random). 
Percentages may not add to 100% due to rounding.

Fig. 3  Representativeness of patient cohorts relative to the CDC cumulative COVID-19 + case counts over their 
respective time periods. Results are shown when calculating the JSD using (1) the raw CDC data and (2) all 
data adjusted when assuming missing-at-random data. Lower JSD values indicated more similarity between the 
dataset and its comparison group (cumulative COVID-19 positive patient case counts from the CDC).
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specifications for the collection, exchange, storage, and retrieval of information associated with health care 
applications, including medical records, medications, radiological images, payment and reimbursement, med-
ical devices and monitoring systems, and administrative processes”19. An example of a data standard is the 
Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), which is an open com-
munity data standard designed to standardize the structure and content of observational data and to enable effi-
cient analyses that can produce reliable evidence (https://www.ohdsi.org/data-standardization/). Moreover, the 
use of common data elements, defined as data collection units comprising one or more questions together with a 
set of valid values, can play a valuable role for widescale interoperability20. These efforts are especially important 
for addressing the challenges of combining imaging data with other clinical information.

Methods
Interoperability between MIDRC and BDC.  The first example use case benefitting from interoperability 
between data repositories is to acquire multimodal data from multiple sources in order to enable association, cor-
relation, and fusion analyses. For example, for the PETAL RED CORAL dataset, the BDC repository has clinical 
metadata of COVID-19 patients whereas MIDRC has the medical images of the same patients. Here the use case 
is to investigate the associations of multi-modality data (e.g., medical images and clinical laboratory testing) or 
integrate the multimodal data using AI/ML fusion models for a certain clinical task such as the characterization 
of COVID severity to tailor patient treatments (Fig. 4).

The demonstration of interoperability between MIDRC and BDC is to match patients with clinical data in 
BDC to corresponding patients with imaging data in MIDRC. To implement this, we follow a few steps as illus-
trated (in a simplified presentation) in Fig. 5.

Both MIDRC and BDC operate upon the Gen3 Data Platform (https://gen3.org/). Gen3 is an open-source 
data platform for managing, analyzing, and sharing biomedical data. It supports open Application Programming 
Interfaces (APIs) so that the data it manages are findable, accessible, interoperable and reusable (FAIR)12. The 
FAIR APIs that both MIDRC and BDC provide are the essential foundation for the interoperability described 
in this study. Gen3 supports data objects, such as image files; structured data, such as clinical data; and 
semi-structured data, such as JSON-based metadata. Gen3 based platforms, including MIDRC and BDC, sup-
port a variety of identity providers for authenticating users, including InCommon (https://incommon.org/) and 
ORCID (Open Researcher and Contributor Identifier, https://orcid.org/). Gen3 based platforms also support 
several methods for managing authorization information specifying which users are authorised to access which 
data. In particular, Gen3 can interoperate with the NIH dbGaP system21, which is used by BDC to manage 
authorization information.

Fig. 4  Overview of example use case of interoperability between MIDRC and BioData Catalyst for multimodal 
data fusion.

Fig. 5  Workflow for interoperability between MIDRC and BioData Catalyst.
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Data linkage across MIDRC and BDC is performed through Gen3’s opaque Globally Unique IDentifiers 
(GUID) that follow the DRS GA4GH standard22. An DRS identifier has a prefix specifying a particular data 
platform, such as MIDRC or BDC, followed by a GUID. Opaque in this context means that the GUID does not 
contain a name, medical record number or any other string that has semantic information.

Accessing data from both MIDRC and BDC requires authentication. In addition, access to the BDC clinical 
data used for this study is controlled access and requires authorization through dbGaP. The required authentica-
tion and authorization is handled by MIDRC and BDC through the Gen3 Fence service. Once a user is authenti-
cated and authorized and a cohort or dataset is specified, the DRS identifiers for the data in the cohort or dataset 
can be accessed in a workspace or downloaded. In particular, a list of DRS identifiers for the MIDRC PETAL 
RED CORAL Imaging dataset can be obtained in this way and a list of DRS identifiers for the BDC PETAL RED 
CORAL dataset can also be obtained. Note that for a user to be authorized to access the RED CORAL clinical 
dataset on BDC, the user must register on dbGaP, create a project, submit a Data Request Form, and have the 
Data Request Form approved by the Data Access Review Committee21. After approval, the dbGaP authorization 
information for the user is updated, and this information is available for systems that are approved for interop-
erating with dbGaP, such as Gen3.

Gen3 has a privacy preserving record linkage (PPRL) service called the Crosswalk Service that, given DRS 
identifiers for images from a data commons, can provide the associated DRS identifiers for matching data in 
another commons. For example, given a list of DRS identifiers for images in MIDRC, the Crosswalk service can 
provide the DRS identifiers for associated clinical data in BDC, and vice versa. Note that since both MIDRC and 
BDC use privacy preserving opaque identifiers, the Crosswalk service must be provided with a mapping or cross 
linking of these opaque identifiers. This mapping is usually provided when data are submitted, but can be done at 
any time. It is important to note that even with this cross linking of identifiers, all the information is still private 
since all the identifiers are opaque and contain no PII.

With these lists of DRS identifiers, the image data and corresponding clinical data can be easily exported 
from the commons and imported into any analysis environment that is approved for managing controlled access 
data and is authorized to interoperate with the commons23. Sometimes these are called authorized environ-
ments, computational enclaves, or freeports23. For this study, the image and corresponding clinical data were 
imported into workspaces that were part of Gen3’s Biomedical Research Hub24, and which are approved analysis 
environments for analyzing controlled access BDC data.

In summary, the demonstration of interoperability between MIDRC and BDC demonstrates the process for 
meeting the objective of collecting patient data from both an imaging and non-imaging data source.

Interoperability between MIDRC and N3C.  The second example use case benefitting from interopera-
bility between data repositories is to aggregate data in one to create cohorts in another in order to enable devel-
opment of AI models that incorporate data across modalities. In this example use case, the goal is to develop 
an algorithm based on medical images to predict severity of COVID-19 disease, defined as the admission of 
a COVID-19 positive patient to the intensive care unit (ICU) or intubation within 24 hours of chest radiogra-
phy. The chest radiographs are to be collected from MIDRC, while the clinical data (i.e., information on ICU 
admission and/or intubation or lack thereof) are to be collected from N3C, which ingests data and transforms 
the associated data models to a harmonized Observational Medical Outcomes Partnership (OMOP) analytics 
dataset (https://ncats.nih.gov/research/research-activities/n3c/covid-enclave/data-overview; https://www.ohdsi.
org/data-standardization/). Therefore, a MIDRC user developing the algorithm would aim to create two cohorts 
of images: (1) patients with severe COVID and (2) patients with mild COVID (Fig. 6).

The first step for interoperability is to identify and characterize the subjects with relevant data in each data 
repository, based upon the task for which the AI is to be developed. MIDRC and N3C have different governance 
(including models of access), which impact the interoperability workflow. Conducting this use case requires 
that users have separate log-in accounts at MIDRC Open Data Commons and at N3C. Any registered user at 
the MIDRC Open Data Commons can download images, while registered users at N3C must complete a Data 
Use Request (DUR) for the specific study they are conducting and agree to keep the individual N3C data within 
an N3C computational enclave (freeport). At this time, the matching of patients with data in both N3C (clinical 
data) and MIDRC (imaging data) is conducted using Privacy Preserving Record Linkage via an honest broker. 
These matches are produced on request and held as a table within N3C, which for now operates as the freeport 
enclave. Additionally, it is recommended that users use this list as the starting point and then download from 
MIDRC only those images relevant for the study and associated with the patients in the match table.

Subsequently, the user can calculate an imaging-derived measure (such as the severity index25) on the images 
from the MIDRC cohort using their local computer, and then import into the freeport enclave (which is for 
now limited to the N3C enclave) via an upload request. Figure 7 outlines the steps required for interoperability 
between N3C and MIDRC.

In summary, the demonstration of interoperability between MIDRC and N3C demonstrates the process for 
meeting the objective of creating patient cohorts of imaging data based upon characteristics from clinical data.

Characterization of the representativeness of the curated datasets.  To characterize the repre-
sentativeness of the two datasets we curated via interoperability, we evaluated the demographic characteristics of 
patients in each of the two datasets for the categories of sex, race, and ethnicity. Similar to our previous work in 
this area26, we compared each of these demographic characteristics to the cumulative COVID-19 positive case 
counts as reported by the Centers for Disease Control and Prevention17 over the period of image collection, using 
the Jensen-Shannon Distance (JSD)16 as a measure of similarity. The JSD is bounded between 0 and 1 when log2 is 
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used within the analytical expression for this measure, where JSD = 0 indicates complete similarity between two 
distributions and JSD = 1 indicates no similarity.

A practically important issue is that it is common to have missing data in the collected demographic charac-
teristics. As a hypothetical example, we assume the sex distribution of a curated dataset is as follows: 45% female, 
45% male, 10% missing, while the population distribution is as follows: 35% female, 35% male, and 30% missing. 
A raw JSD score using the three categories (female, male, missing) is 0.18. However, if the missing information 
can be assumed to be distributed at random (i.e., not associated with sex), then the adjusted distribution would 
be 50% female and 50% male for both the curated dataset and the population, thereby yielding a JSD score of 
0. This means that, if we assume missing data is randomly distributed, the different proportion of missing data 
would impact the JSD metric. In this study, we provided both the raw and adjusted JSD values.

Data availability
The imaging data are freely available at https://data.midrc.org. The clinical data of the PETAL RED CORAL 
dataset are freely available after approval/authorization of dbGaP (https://www.ncbi.nlm.nih.gov/gap/). The 
clinical data of the N3C dataset were available to the authors by Data Use Request DUR-BB40587 and are 
available to the public with a valid Data Use Request. The dbGaP data can be accessed at https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002363.v1.p1, dbGaP Study Accession: phs002363.v1.p1. 
The N3C Data Use Agreement is available at https://ncats.nih.gov/sites/default/files/NCATS_N3C_Data_Use_

Fig. 6  Overview of example use case for cohort building between MIDRC and N3C for developing AI 
algorithms that incorporate image-based data.

Fig. 7  Workflow for interoperability between MIDRC and N3C.
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Agreement.pdf. Users must be approved and can only analyze data within the platform; data cannot be removed 
or downloaded. Requests for access to the MIDRC-N3C dataset described in this study can be made directly to 
N3C (https://n3c.ncats.nih.gov/education/dur).

Code availability
Custom code for processing the PETAL RED CORAL dataset as described is available at https://github.com/
MIDRC. Code for processing the N3C dataset is not publicly available due to restrictions on the Limited Dataset, 
as the N3C Data Use Agreement specifies that N3C COVID Enclave data will be used only for clinical and 
translational research and public health surveillance of COVID-19. Please contact the authors with requests for 
more information. In general, all code shareable by MIDRC is available at https://github.com/MIDRC.
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