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Background: Early and precise diagnosis is vital to improving
patient outcomes and reducing morbidity. In resource-limited
settings, cancer diagnosis is often challenging due to shortages
of expert pathologists. We assess the effectiveness of general-
purpose pathology foundation models (FM) for the diagnosis
and annotation of nonmelanoma skin cancer (NMSC) in
resource-limited settings.

Methods: We evaluated three pathology FMs (UNI, PRISM, and
Prov-GigaPath) using deidentified NMSC histology images from
the Bangladesh Vitamin E and Selenium Trial to predict cancer
subtype based on zero-shot whole-slide embeddings. In addition,
we evaluated tile aggregation methods and machine learning
models for prediction. Lastly, we employed few-shot learning of
PRISM tile embeddings to perform whole-slide annotation.

Results: We found that the best model used PRISM’s aggre-
gated tile embeddings to train a multilayer perceptron model to

Introduction

Computational pathology (CPath) is rapidly advancing, driven by
progress in machine learning image analysis and the increasing
availability of high-resolution whole-slide images (WSI). The po-
tential of CPath lies in assisting pathologists through the automation
of tasks, including cancer detection and region-of-interest (ROI)
identification, tumor subtyping and grading, prognosis prediction,
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predict NMSC subtype [mean area under the receiver operating
characteristic curve (AUROC) = 0.925, P < 0.001]. Within the
other FMs, we found that using attention-based multi-instance
learning to aggregate tile embeddings to train a multilayer per-
ceptron model was optimal (UNI: mean AUROC = 0.913,
P < 0.001; Prov-GigaPath: mean AUROC = 0.908, P < 0.001). We
finally exemplify the utility of few-shot annotation in computa-
tion- and expertise-limited settings.

Conclusions: Our study highlights the important role FMs
may play in confronting public health challenges and exhibits a
real-world potential for machine learning-aided cancer diagnosis.

Impact: Pathology FMs offer a promising pathway to improve
early and precise NMSC diagnosis, especially in resource-limited
environments. These tools could also facilitate patient stratifica-
tion and recruitment for prospective clinical trials aimed at
improving NMSC management.

and the discovery of visual and subvisual biomarkers (1-3). CPath
methods developed in the past several years have been shown to be
highly effective in tasks as varied as grading prostate cancer (4),
lymph node metastasis detection (5), and predicting colorectal
cancer outcomes (6). However, a major challenge associated with
the development of these methods has been the amount of labeled
data required to train the models, which requires expert annotation
of a large number of WSIs. This becomes infeasible in the case of
rare diseases. Additionally, as gigapixel-scale WSIs must be parti-
tioned into patches to be used for model input, there are several
limitations associated with their use in machine learning algorithms.
First, supervised learning can be extremely challenging as the vast
majority of patches will not contain diagnostically relevant data,
resulting in poor data efficiency. Second, slide-level predictions re-
quire the aggregation of patch-level predictions, often requiring
manually developed heuristics (7, 8).

To overcome these challenges, the recent focus within CPath
research has been on the development of foundation models (FM)
that can generalize across tasks, tissue types, and diseases (arXiv
2405.10254; refs. 9-11). Such FMs are analogous to breakthroughs
in natural language processing, in which task-agnostic models have
been developed using self-supervised training techniques to output
feature representations of sequences of text (12). As self-supervised
training does not require data annotations/labels, extremely large
quantities of input data can be used, and models can learn from
vast, heterogeneous datasets. Efficient self-supervision techniques
for image data, such as DINOv2 (12), have, therefore, enabled the
development of task-agnostic FMs for CPath, trained on thousands
to millions of WSIs (arXiv 2405.10254; refs. 9-11).

These FMs hold particular promise in settings in which access to
expert pathologists is constrained, such as in Bangladesh (13, 14).
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Arsenic contamination of groundwater in Bangladesh is considered
to be the largest mass poisoning of a population in history by the
World Health Organization, with an estimated 35 to 77 million
Bangladeshi people having been chronically exposed to arsenic
through drinking water (15-18). Arsenic toxicity is closely depen-
dent on the amount of ingestion, and once consumed, 40% to 60%
of the arsenic is retained in the human body and passes slowly into
the skin, resulting in malignancies, namely nonmelanoma skin cancer
(NMSG; refs. 15, 19). More than 95% of NMSC cases consist of basal-
cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC).
The former is a slow-growing, locally invasive epidermal tumor. The
latter arises from dysplastic epidermal keratinocytes. SCC can be ei-
ther in situ (Bowen disease) or invasive. Bowen disease is generally
considered a low-grade form of SCC, with a reported risk of pro-
gression to invasive SCC of up to 3% (20-22). Current evidence
supports that the delay in detection is the main underlying cause of
aggressive tumor behavior and subsequent morbidity in patients with
NMSC (20, 23). Hence, early and precise detection is critical for
controlling disease progression and could lead to a substantially
higher success rate in treatment. Usually, both types are readily
identified by a pathologist in a timely manner, and in this situation,
patients would benefit from timely treatment. However, in resource-
limited settings, such accurate and timely detection becomes a chal-
lenge due to the limited number of expert pathologists, resulting in
affected individuals having a poor prognosis. In Bangladesh (and
many other countries), as predisposing exposure and susceptibility are
difficult to eradicate, people who are chronically exposed to arsenic
through consuming contaminated water are deemed at high risk of
NMSC and other health consequences (23).

In this study, we evaluated the performance of three FMs: Prov-
GigaPath (9), UNI (10), and PRISM (arXiv 2405.10254), for the
diagnosis of NMSC, comparing their diagnostic performance
against a standard ResNetl8 tile encoder baseline (24). Using
deidentified NMSC hematoxylin and eosin (H&E)-stained WSIs
from the Bangladesh Vitamin E and Selenium Trial (BEST), col-
lected by the Institute for Population and Precision Health at the
University of Chicago, we evaluated each FM’s ability to classify
NMSC subtypes at the whole-slide level. This involved extracting
tile embeddings from the FMs, aggregating them using standard
methods such as global average pooling (GAP) and attention-
based deep multiple instance learning (ABMIL; ref. 25), as well as
FM-specific aggregation techniques. These aggregated slide-level
embeddings were then input into downstream classifiers [logistic
regression (LR), XGBoost (26), or a shallow multilayer perceptron
(MLP)] for final subtype prediction. Details of these methods are
provided in Table 1.

Materials and Methods

Data source

This study utilized 2,130 H&E WSIs of 553 NMSC biopsies from
455 patients. These samples were collected by the BEST. BEST is a
2 x 2 factorial randomized prevention trial of 6-year daily supple-
mentation of vitamin E and selenium among 7,000 participants
from two regions (Araihazar and Matlab) in Bangladesh (27).
NMSC was ascertained at each biennial in-person follow-up exam of
all BEST participants who had undergone three levels of evaluation
(first by research physicians, then by senior physicians, and finally
by an expert dermatologist) before biopsies were conducted on their
suspicious lesions. Smaller lesions (diameter <5 mm) were punch-
biopsied, and larger lesions (diameter >5 mm) were excised. Among
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individuals with multiple biopsy-eligible lesions, the lesion most
concerning for malignancy was biopsied. When an individual de-
veloped lesions at different time points, biopsies were collected at
each time point. Formalin-fixed biopsy tissues were processed at a
single specialized surgical pathology laboratory in Dhaka, Bangla-
desh, and processed into H&E slides. Each biopsy generated an
average of four slides. We note that the overall quality of these slides
was generally below that required in accredited diagnostic pathology
labs in the United States. These slides were transported to the Uni-
versity of Chicago Human Tissue Resource Center Core Facility
(RRID: SCR_019199), scanned by a Leica Aperio ScanScope XT at
20x magnification (0.5 MPP), and saved in the SVS format for
analysis. The final dataset we used in our experiments contains a
majority of benign cases with Bowen disease as the next most prev-
alent class, followed by BCC, and finally invasive SCC (Table 2). All
data were collected with approval from the Institutional Review
Boards of the University of Chicago, locally from the Bangladesh
Medical Research Council, and from the International Centre for
Diarrhoeal Disease Research, Bangladesh, in accordance with the
guidelines set by the US Common Rule and the Declaration of Hel-
sinki. All participants provided written informed consent. Patients
with identified tumors were provided standard of care through the
UChicago Research Bangladesh Community Hospital, as well as
through regional tertiary hospitals with referrals.

Ascertainment of NMSC

All WSIs were given a diagnosis by a dermatopathologist (C.R.
Shea) from the Section of Dermatology at the University of Chicago
Medical Center. The diagnosis included whether there was an in-
dication for NMSC and, if so, the histopathologic subtype of NMSC.
Of note, our specimen bank did not include any actinic keratoses;
this may reflect the generally dark skin pigmentation (Fitzpatrick
types V and VI) of the Bangladeshi study population, in which
actinic keratoses are rare.

Data preprocessing

For input into the FMs, the WSIs were preprocessed into col-
lections of nonoverlapping 256 x 256 tiles. We utilized Prov-
GigaPath’s preprocessing toolbox, which segmented each WSI into
foreground and background using Otsu’s method (28) to determine
a threshold for foreground pixels based on average luminance for
each pixel across the channel dimension and a fixed tile occupancy
threshold of 0.1. Tiles with occupancy below the threshold were
discarded to ensure that only tiles containing tissue were retained
and used in downstream tasks. Preprocessing of the 2,130 WSIs
resulted in 4,316,353 image tiles.

Framework

To obtain a slide-level classification, FM tile encoders were first
used to generate tile embeddings. Each FM’s tile encoder was run
according to the specific model’s documentation, including pre-
scribed image transformations. For comparison with ResNet18 as a
tile encoder, tiles were center-cropped to 224 px squares per
channel, normalized using ImageNet values, and embedded using
ResNet18 pretrained on ImageNet. For FMs that included an ad-
ditional slide aggregator (Prov-GigaPath and PRISM), slide em-
beddings were generated using the methods outlined in their
respective documentation. For Prov-GigaPath, two sets of slide
embeddings were generated: one using the [CLS] token from the
final model layer and the other using GAP (which we refer to as
“pool”) of all contextualized tile embeddings output by the final
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Table 1. Important concepts and terms used in this study.

FMs
Prov-GigaPath Prov-GigaPath is a vision model developed by

Microsoft, consisting of a tile encoder and a slide
aggregator, and was trained on 171,189 WSIs. Its
“tile encoder” is a vision transformer (ViT) with
1.1 billion parameters, trained using the DINOv2 self-
supervised learning algorithm. Its “slide
aggregator” is a LongNet (a transformer that uses
dilated attention for long sequences) trained using
masked autoencoding. Slide-level embeddings are
produced either by GAP over the contextualized tile
embeddings output by the LongNet or by using the
embedding of a specialized [CLS] token.

UNI UNI is a vision model developed by the Mahmood Lab
at Brigham and Women’s Hospital, consisting only
of a tile encoder, and was trained on more than
100,000 WSis. Its “tile encoder” is a ViT with
303 million parameters, trained using DINOv2.

PRISM PRISM is a vision-language model developed by
Paige, consisting of a tile encoder and a slide
aggregator. For our study, we only use the vision
components of the model. Its “tile encoder” is the
Virchow model, also developed by Paige, a ViT with
631 million parameters trained using DINOv2 on
1.5 million WSiIs. Its “slide aggregator” is a perceiver
model trained jointly with a text model on more
than 587 WSIs using both contrastive and
generative objectives. Slide-level embeddings are
produced by using the embedding of a specialized
[CLS] token.

Aggregation methods
GAP GAP produces a single slide-level embedding by
averaging all tile embeddings.

ABMIL ABMIL aggregates tile embeddings by creating a
weighted average embedding. Weights are

determined using a learned attention mechanism.

Model-specific Both Prov-GigaPath and PRISM have model-specific
slide slide aggregators, described above.
aggregator
Classification methods
LR Multinomial LR, or softmax regression, applies LR to
classification problems with more than two classes.

XGBoost XGBoost is a gradient boosting algorithm that uses an
ensemble of multiple simple decision trees to
generate predictions.

MLP An MLP is a feedforward, fully connected neural

network. In our case, we use a network with three
hidden layers of dimensions 1,024, 512, and 256 and
a final classification layer of dimension 4.

model layer. For each FM tile encoder, we additionally develop our
own slide aggregators over precomputed tile embeddings. The
simplest of these is GAP of tile embeddings into a single-slide
embedding. Alternatively, we train a joint aggregator—classifier us-
ing ABMIL and a three-layer MLP classifier. Lastly, for each slide
aggregator, the slide embeddings are used to train a multinomial LR,
XGBoost, and a three-layer MLP classifier. Our overall classification
framework is outlined in Fig. 1. For all FM tile encoders and slide
aggregators, we use the models as is with no additional fine-tuning,
only training models over the frozen tile- or slide-level embeddings.
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Table 2. Dataset characteristics broken down by NMSC subtype
at the individual patient level and the biopsy level.

Data characteristics

NMSC Type Benign Bowen BCC SCC Total
Patients, n (%) 210 (46) 140 (31) 85(19) 20 (4) 455 (100)
Biopsies, n (%) 229 (41) 171 (31) N6 (21) 37 (7) 553 (100)

NOTE: Patients with multiple biopsies were assigned the most frequent cancer
type across all their biopsies.

As the output of our pipeline resulted in slide-level classifications,
although pathologist labels were given at the biopsy level, we pro-
duced biopsy-level classifications by averaging predicted slide-level
cancer-type probabilities across all slides for each biopsy.

All deep learning models we studied were implemented using
Python 3.10.14 (RRID: SCR_008394) and PyTorch 2.4.1 (RRID:
SCR_018536). For ABMIL- or MLP-based models, a maximum of
30 epochs were used for training with gradient accumulation over
16 slides. A learning rate of le—5 was used with an AdamW opti-
mizer over cross-entropy loss of pathologist-labeled diagnoses.
Graphics processing unit (GPU)-accelerated inference of each FM
tile encoder could be done using a single NVIDIA 2080 Ti, a
consumer-grade GPU from 2018.

Aggregation methods

Typically, feature extraction methods that output whole-image
classifications rely on consistent input sizes in terms of image sizes
and the number of image tiles. For WSIs, their size, shape, and
number of foreground tiles can vary drastically; in the BEST dataset,
foreground tile counts from a single WSI ranged from 82 to
38,404 tiles. This presents a major challenge to the efficient classi-
fication of WSIs. To overcome this, we considered three aggregation
methods: GAP, ABMIL, and FM-specific aggregators.

GAP is the simplest of these methods. Tile embeddings for a
given WSI were stacked as row vectors into a single matrix. The
slide embedding is then given by uniformly averaging the tile
embeddings across all rows. An implicit assumption of GAP is that
all tile embeddings have equal importance.

ABMIL challenges this by computing a weighted average of tile
embeddings, assigning “importance” to each tile depending on its
usefulness for the model in determining a diagnosis. ABMIL learns
this weighting according to the specific data it is trained on, unlike
naive aggregation methods such as GAP. Additionally, visualization
of the tile weighting, via an attention heatmap, helps provide model
explainability. One specific requirement of ABMIL is representing the
2D layout of tiles in a 1D sequence. In our implementation, we
encoded tile positions by adding 2D sinusoidal positional embeddings
to the tile embedding vectors prior to input into the MIL module.
This is similar to the positional embedding used by Prov-GigaPath.
Experiments using ABMIL included both gated and ungated imple-
mentations (in which gated attempts to boost model expressiveness),
as well as 1 or 8 parallel attention branches, in which 8 was chosen to
match the original transformer implementation with 8 attention
heads (25, 29). A fully connected layer was then used to project the
attention output to the original input embedding dimension. We
trained each ABMIL module jointly with an MLP classification head
to provide a well-defined training objective.

Both Prov-GigaPath and PRISM include slide aggregators for use
in downstream slide-level tasks, which we used directly as
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Figure 1.

Overview of generating whole-slide embeddings using FMs. Each WSI is split into 256 x 256 px tiles, and tiles with visible tissue are selected for further
processing. Tile features are extracted by a tile encoder, tile embeddings for a WSI are aggregated into a slide embedding, and NMSC is classified using the slide-
level embedding. Tile aggregation methods include ABMIL, FM-specific aggregators, or GAP. Classification is performed using LR, XGBoost, or a shallow MLP. ViT,

vision transformer.

prescribed in each model’s documentation. Prov-GigaPath uses a
LongNet (arXiv 2307.02486) vision transformer architecture for its
slide aggregator, utilizing a resource-efficient dilated self-attention
mechanism to control for long tile sequence lengths. The LongNet
produces contextualized tile embeddings, gathering relevant infor-
mation from each input tile embedding and the rest of the tiles in
the sequence. The final slide-level embedding is either the [CLS]
token or the average output contextualized tile embedding from
the output of the final layer. PRISM uses a perceiver architecture
for its slide aggregator. The perceiver architecture handles vari-
able sequence length by projecting input into a fixed-length latent
sequence through a cross-attention module that uses a latent query
matrix parameterized by the model (30). PRISM utilizes a latent
dimension of 512, plus an additional dimension for the [CLS] token.
The final slide-level embedding is the [CLS] token output from the
final layer of the perceiver.

Classification methods

To focus on resource-constrained environments, we explored
popular, resource-efficient classification methods for the task of NMSC
classification: multinomial LR, XGBoost, and a shallow MLP. For LR,
we used LogisticRegression from scikit-learn (RRID: SCR_002577) with
the SAGA solver, L2 regularization, and 1,000 maximum iterations. For
XGBoost, we used XGBClassifier from XGBoost (RRID: SCR_021361)
with default hyperparameters and a softmax objective. Finally, the

AACRJournals.org

shallow MLP was implemented with three hidden layers of dimensions
1,024,512, and 256, regardless of the input dimension to the MLP. MLP
models were implemented as described above. The number of layers
and their dimensions were chosen based on empirical experiments to
balance model complexity and performance.

Fivefold cross-validation and training

All experiments were repeated using fivefold cross-validation,
with four folds used for training and one fold used for validation.
As multiple biopsies were taken from some patients, it was vital to
ensure that there was no patient-specific data leakage between
folds. Folds were, therefore, constructed by splitting the full
dataset by patient and stratifying by the target variable (i.e., NMSC
classification). This ensures that all data from a single patient are
contained within a single fold, preventing data leakage between
training and validation sets. The same folds were used for all
experiments.

For experiments in which slide-level embeddings were
available, we trained the MLP, LR, and XGBoost classifiers
using the embeddings as is, with no transformations or nor-
malization applied. For experiments in which we also trained
an aggregator, the aggregator was trained end to end with the
MLP classification head, and all training was performed using
unmodified tile embeddings with no transformations or nor-
malization applied.

Cancer Epidemiol Biomarkers Prev; 34(7) July 2025
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Evaluation

Evaluation was conducted using the area under the receiver op-
erating characteristic curve (AUROC). Metrics were calculated us-
ing a one-vs-rest strategy for each cross-validation fold on the fold
reserved for validation. This resulted in classification metrics for
each cancer type on each fold, for a set of 20 results per experiment.
Pairwise comparison of experiment results was performed using a
one-sided Wilcoxon signed-rank test. A weighted mean AUROC
was calculated by taking the sum of the individual AUROC values
from one-vs-rest evaluations, weighted by the respective class
proportion.

Attention heatmap visualization

For slide aggregators that utilize an attention mechanism, the
attention scores from the final layer were extracted from the
models to produce heatmap visualizations of the attention scores.
These heatmaps were overlaid on the original WSIs. This high-
lights regions of the WSI that each model considers most im-
portant for its classification decision, providing interpretability to
a model’s predictions.

Few-shot framework

For our few-shot annotation framework, we first derived
representative tiles for the types of tissue we aim to classify.
Specifically, we derived representative tiles for invasive SCC,
Bowen disease, superficial BCC, nodular BCC, epidermis, der-
mis, subcutis, and artifact. These classes are an extension of the
four classes used in the zero-shot framework due to the stark
difference in appearance of tissue between, for example, dermis
and epidermis. As a result, the use of seven classes enables the
generation of finer-grained representative embeddings. Repre-
sentative tiles for these seven classes were extracted from man-
ually annotated ROIs across five samples spanning the different
cancer types. The ROIs were broadly annotated as quadrangular
bounding boxes surrounding the tissues of interest. The ROIs
were annotated by a medical student and reviewed by an expert
dermatopathologist (C.R. Shea).

We extract tiles from each ROI and embed each tile using the tile
encoder for a given FM. As the number of representative tiles per
ROI depends on the size of the ROI, we apply GAP to all extracted
tile embeddings across each class to derive one representative em-
bedding per class. To do few-shot annotation at inference time, we
classify tiles from the sample WSI as the class in which the repre-
sentative embedding is most similar to the inference tile embedding,
as measured by the dot product between embeddings.

Data availability

The code developed for this study is publicly available on GitHub:
https://github.com/sjne09/akdslab-skin-cancer. Due to patient pri-
vacy concerns related to a vulnerable population, the WSI dataset
cannot be made publicly available. However, data access may be
granted upon reasonable request to the corresponding author and is
subject to appropriate data use agreements.

Results

We first sought to identify the optimal combination of tile em-
bedding aggregation strategy and downstream classification model
for each pathology FM evaluated (Fig. 2A). We observe that for
UNI- and Prov-GigaPath-derived tile embeddings, ABMIL aggre-
gation with MLP classification attains the highest weighted mean
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AUROC across all test splits (UNI: mean AUROC = 0.913,
P < 0.001; Prov-GigaPath: mean AUROC = 0.908, P < 0.001). For
PRISM, an MLP trained over PRISM’s own tile aggregator outperforms
all other methods tested for PRISM tile embeddings (mean
AUROC = 0.925, P < 0.001). Additionally, the best-performing com-
binations for each FM significantly outperformed a baseline model of
ResNetl18 trained on the BEST dataset (mean AUROC = 0.805,
P < 0.001). Notably, across all FM’s GAP aggregated embeddings or
over Prov-GigaPath’s provided tile aggregator, the computationally
simplest classification model using LR does better than MLP or
XGBoost (UNI + GAP + LR: mean AUROC = 0.847; Prov-GigaPath +
GAP + LR: mean AUROC = 0.828; Prov-GigaPath + GigaPathPool +
LR: mean AUROC = 0.827; Prov-GigaPath + CLS + LR: mean
AUROC = 0.803; PRISM + GAP + LR: mean AUROC = 0.860). Al-
though the combinations with LR lag behind ABMIL/MLP, there is a
surprisingly small performance gap.

Next, we compared the subtype-specific classification perfor-
mance using the optimal aggregator/classifier combination iden-
tified for each FM (Fig. 2B). We observe that for benign
classification, PRISM performs the best, whereas for BCC classi-
fication, all models perform comparably. However, for SCC clas-
sification, Prov-GigaPath lags behind PRISM and UNI. Yet UNI is
worse than PRISM at distinguishing Bowen disease.

To further investigate these performance differences, we gener-
ated confusion matrices for each FM’s optimal configuration
(Fig. 2C). We observe that PRISM has the least confusion on actual
benign samples. Additionally, the same is true for PRISM on actual
SCC samples. Especially given the relationship between Bowen
disease and SCC, we observe that PRISM predicts the fewest Bowen
disease cases for invasive SCC samples. This may help explain
PRISM’s strong performance in distinguishing between Bowen and
SCC cases compared with the other FMs. However, all FMs dem-
onstrated some degree of confusion between Bowen disease and
benign cases.

To explore the mechanisms underlying PRISM’s strong perfor-
mance, we visualized tile-level importance using attention maps
generated by each model’s respective optimal tile aggregator
(Fig. 3). We extracted the attention maps of each model for the
slides of benign tissue, BCC, Bowen disease, and SCC. We observed
that the attention of the Prov-GigaPath and UNI aggregators fo-
cuses more on the epithelium while paying relatively less attention
to the dermis. PRISM’s aggregator still focuses on epidermal re-
gions, especially those that contain cancerous tissue; however, it also
pays greater attention to the whole-tissue sample. From an expert
dermatopathologist’s perspective, such a broad view is necessary for
distinguishing SCC from Bowen disease as dermal invasion can be
an important distinguishing feature between the two. Qualitatively,
we observed the highest concordance between expert annotations
and model attention for PRISM.

Finally, we evaluated our proposed few-shot annotation
framework (Fig. 4). As PRISM tile embeddings performed most
optimally, we used PRISM-derived embeddings for our few-
shot annotations. After extracting the representative tile em-
beddings for our seven tissue subclasses, we visualized these
representative embeddings by plotting their first two principal
components (Fig. 4B). We observed a wide separation of arti-
fact embeddings and a stratification of tissue embeddings that
seem to follow the dermatologic organization of the tissue
types. For example, invasive SCC’s embedding is sandwiched
between the Bowen and dermis/subcutis embeddings, reflecting
its relationship with those tissue types.
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Evaluation of FM performance for classifying skin cancer types. A, Classification results with different combinations of tile aggregation and classifier models for
each FM. B, Per-class classification results using the best combination of each FM. C, Confusion matrices for each model.

annotations correctly identify tiles of each cancer type in their re-
spective slides, aligning with expert annotations of these same ROIs.
However, we also observe misidentification of tiles. In SCC, many

Using these representative embeddings, we generated few-shot
annotations for the same representative slides previously analyzed
(benign, BCC, Bowen, SCC; Fig. 4C). We find that our few-shot

SCC

Benign

Manual
annotation

PRISM

Higher attention score

UNI

Prov-GigaPath

Figure 3.
Attention heatmap annotations for the best-performing tile aggregator of each FM, compared against expert pathologist-annotated ROIs in red. Annotations are
shown for benign, BCC, Bowen, and SCC slides.
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Few-shot annotation of ROIs using PRISM-derived embeddings. A, Overview of the few-shot methodology. For each of the tissue subtypes, a representative
specimen/biopsy is selected. For each of the selected biopsies, ROIs exhibiting the class of interest are manually annotated; tiles and their embeddings are
extracted from these ROIls and averaged to derive a representative embedding per class. At inference time, the dot product between tile embeddings and
representative embeddings is used as a similarity score for each class, in which the tile prediction is the class with the greatest similarity. B, Visualization of the
first two principal components of representative embeddings for each class derived using the few-shot methodology. C, Annotated benign, BCC, Bowen, and
SCC slides, annotated by an expert pathologist (in red) and by our few-shot framework.

tiles are classified as Bowen; although this may be expected to
confound these two classes, the identification of SCC in the BCC
slide is less explainable. Despite these inaccuracies, the framework
effectively highlighted relevant ROIs containing the misclassified
tiles, demonstrating its potential for rapidly identifying areas re-
quiring closer inspection.

Discussion

Foundation models have revolutionized the field of computa-
tional biology, notably in the domains of protein structure pre-
diction, modeling of the genomic landscape, and precision
medicine (30-34). This study demonstrates the successful appli-
cation of CPath FMs for NMSC classification and annotation
using whole-slide histology images, establishing their superior-
ity over a traditional convolutional neural network baseline
(ResNet18). Leveraging NMSC data from the BEST cohort, we
evaluated the zero-shot classification performance of state-of-the-
art pathology FMs.

Our results indicate that although all evaluated FMs per-
formed well, architectural nuances and training strategies in-
fluence performance on specific tasks. When using ABMIL
aggregation on tile embeddings from UNI and Prov-GigaPath
(both using visual transformers pretrained with DINOv2),
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performance was comparable, suggesting that within this spe-
cific evaluation framework, differences in training data scale or
model parameters between these two FMs did not translate to
significant performance gains for NMSC classification. How-
ever, PRISM, utilizing its distinct perceiver-based architecture
and native aggregation mechanism, achieved significantly
higher overall performance. Analysis of attention heatmaps
provided a potential explanation: PRISM’s tendency to inte-
grate information from broader tissue regions, including the
dermis, likely facilitated better discrimination between NMSC
subtypes, particularly the challenging distinction between
Bowen disease and invasive SCC, in which stromal context is
informative. We hypothesize that this broader attention pat-
tern may stem from PRISM’s multimodal training objective
(incorporating text alongside images), which potentially en-
courages the model to learn more globally relevant features
useful for tasks beyond simple classification, such as report
generation (35, 36). This observation underscores the potential
benefits of developing FM architectures that effectively inte-
grate multimodal data to model complex biological systems.
An additional benefit observed was the FMs’ ability, particu-
larly demonstrated in the few-shot setting, to implicitly handle
data quality issues by distinguishing tiles containing histologic
artifacts.
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Despite the overall strong performance, the analysis of misclas-
sification patterns revealed nuances. SCC, the least prevalent sub-
type in our dataset (4%), exhibited very few false positive
predictions, with minimal false negatives (misclassified as benign or
Bowen). Conversely, considerable confusion was observed between
Bowen disease and benign cases. Pathologically, diagnosing Bowen
disease requires identifying full-thickness epidermal keratinocytic
atypia, which can be focal. Therefore, sampling variability in biop-
sies or inherent diagnostic subtlety in borderline cases (e.g., dis-
tinguishing Bowen from arsenical keratosis with atypia, classified as
benign here) may contribute to this specific confusion. Addressing
such nuanced classification challenges might require finer-grained,
tile-level supervision or models designed for enhanced interpret-
ability, rather than relying solely on slide-level labels.

We also stress how our few-shot annotation framework can be
useful in computation- and expertise-limited settings. First, the
ROIs that drive the few-shot representative examples were derived
from clear cases of each cancer type, allowing a medical student with
limited training to perform the initial manual annotation. Second,
as the tile annotation uses a simple vector dot product between
embeddings, the few-shot annotation does not require any addi-
tional training of a classifier model; no additional data are required,
and even simple models such as LR are not needed. The only ad-
ditional computation required would be for extracting tile embed-
dings using pretrained FMs, a task that is suitable for relatively
inexpensive, consumer-grade hardware.

From a user perspective, we propose using few-shot annotations
to aid personnel who must initially sort or process samples, akin to a
technician or regional doctor without extensive pathology training.
When presented with the few-shot annotation and original H&E,
the annotation could assist personnel in identifying ROIs and
making a preliminary classification. In situations where the human
decision and the annotations differ, such cases can be escalated to a
centralized regional facility where an expert pathologist can make a
final classification. This would reduce the burden on the experts,
who may be limited in number and time, relying on them only for
confusing or difficult cases.

Indeed, an automated system for detecting and visualizing his-
topathologic patterns of NMSC has a wide variety of applications in
clinical settings. Considering the quick inference times of both zero-
and few-shot applications, these FMs could be integrated into
existing clinical management systems to automatically annotate
histopathologic patterns on slides and provide complementary di-
agnostic opinions on challenging cases. This could expedite the
diagnostic process for the pathologist, freeing up more time for
them to focus on a larger number of cases and making cancer
detection more accessible in areas where medical resources are in
shortage.

Although our study demonstrates promising results, there are
several limitations to consider. First, our primary dataset is de-
rived from a single cohort (BEST), which may limit the general-
izability of our findings to other populations. Second, although we
discuss the potential clinical utility of our approach, we ac-
knowledge that further research is needed to fully evaluate its
integration into the existing clinical workflow in resource-limited
settings. This includes addressing practical considerations such as
the availability of digital pathology infrastructure. Although the
availability of slide scanners in remote areas of low- or middle-
income countries is a key barrier to implementing diagnostic al-
gorithms, such infrastructure is at least available in major cities,
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including Dhaka, the capital city close to our study population.
Patients from remote areas, whose slides could be transported and
scanned in regional medical institutions, may still benefit from a
diagnostic algorithm, especially for patients whose cancer man-
agement could be organized locally.

All data used in this study were deidentified to protect patient
privacy. However, it is important to acknowledge the potential risks
associated with the use of artificial intelligence models in healthcare,
particularly in vulnerable populations. These risks include the po-
tential for algorithmic bias, the need for transparency and explain-
ability in model decision-making, and the importance of ensuring
equitable access to the technology. We believe that our study takes a
step toward addressing these concerns by demonstrating the potential
of FMs to improve cancer diagnosis in resource-limited settings, but
further research is needed to fully address the ethical implications of
this technology.

In conclusion, our work highlights the important role FMs may
play in confronting public health challenges and exhibits a real-
world potential for machine learning-aided cancer diagnosis. The
advent of large-scale, pretrained FMs, such as PRISM, now pro-
vides considerable potential for prospective clinical trials to im-
prove treatment outcomes and benefit patients through early and
precise diagnosis, especially in resource-limited settings. We
demonstrate that FMs can outperform traditional transfer learning
approaches for NMSC classification and that a few-shot annota-
tion framework can provide accurate and efficient ROI identifi-
cation. Future work should focus on further validation in diverse
populations, integration into clinical workflows, and addressing
the ethical considerations associated with the use of artificial in-
telligence in healthcare.
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