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�
 ABSTRACT 

Background: Early and precise diagnosis is vital to improving 
patient outcomes and reducing morbidity. In resource-limited 
settings, cancer diagnosis is often challenging due to shortages 
of expert pathologists. We assess the effectiveness of general- 
purpose pathology foundation models (FM) for the diagnosis 
and annotation of nonmelanoma skin cancer (NMSC) in 
resource-limited settings. 

Methods: We evaluated three pathology FMs (UNI, PRISM, and 
Prov-GigaPath) using deidentified NMSC histology images from 
the Bangladesh Vitamin E and Selenium Trial to predict cancer 
subtype based on zero-shot whole-slide embeddings. In addition, 
we evaluated tile aggregation methods and machine learning 
models for prediction. Lastly, we employed few-shot learning of 
PRISM tile embeddings to perform whole-slide annotation. 

Results: We found that the best model used PRISM’s aggre-
gated tile embeddings to train a multilayer perceptron model to 

predict NMSC subtype [mean area under the receiver operating 
characteristic curve (AUROC) ¼ 0.925, P < 0.001]. Within the 
other FMs, we found that using attention-based multi-instance 
learning to aggregate tile embeddings to train a multilayer per-
ceptron model was optimal (UNI: mean AUROC ¼ 0.913, 
P < 0.001; Prov-GigaPath: mean AUROC ¼ 0.908, P < 0.001). We 
finally exemplify the utility of few-shot annotation in computa-
tion- and expertise-limited settings. 

Conclusions: Our study highlights the important role FMs 
may play in confronting public health challenges and exhibits a 
real-world potential for machine learning–aided cancer diagnosis. 

Impact: Pathology FMs offer a promising pathway to improve 
early and precise NMSC diagnosis, especially in resource-limited 
environments. These tools could also facilitate patient stratifica-
tion and recruitment for prospective clinical trials aimed at 
improving NMSC management. 

Introduction 
Computational pathology (CPath) is rapidly advancing, driven by 

progress in machine learning image analysis and the increasing 
availability of high-resolution whole-slide images (WSI). The po-
tential of CPath lies in assisting pathologists through the automation 
of tasks, including cancer detection and region-of-interest (ROI) 
identification, tumor subtyping and grading, prognosis prediction, 

and the discovery of visual and subvisual biomarkers (1–3). CPath 
methods developed in the past several years have been shown to be 
highly effective in tasks as varied as grading prostate cancer (4), 
lymph node metastasis detection (5), and predicting colorectal 
cancer outcomes (6). However, a major challenge associated with 
the development of these methods has been the amount of labeled 
data required to train the models, which requires expert annotation 
of a large number of WSIs. This becomes infeasible in the case of 
rare diseases. Additionally, as gigapixel-scale WSIs must be parti-
tioned into patches to be used for model input, there are several 
limitations associated with their use in machine learning algorithms. 
First, supervised learning can be extremely challenging as the vast 
majority of patches will not contain diagnostically relevant data, 
resulting in poor data efficiency. Second, slide-level predictions re-
quire the aggregation of patch-level predictions, often requiring 
manually developed heuristics (7, 8). 

To overcome these challenges, the recent focus within CPath 
research has been on the development of foundation models (FM) 
that can generalize across tasks, tissue types, and diseases (arXiv 
2405.10254; refs. 9–11). Such FMs are analogous to breakthroughs 
in natural language processing, in which task-agnostic models have 
been developed using self-supervised training techniques to output 
feature representations of sequences of text (12). As self-supervised 
training does not require data annotations/labels, extremely large 
quantities of input data can be used, and models can learn from 
vast, heterogeneous datasets. Efficient self-supervision techniques 
for image data, such as DINOv2 (12), have, therefore, enabled the 
development of task-agnostic FMs for CPath, trained on thousands 
to millions of WSIs (arXiv 2405.10254; refs. 9–11). 

These FMs hold particular promise in settings in which access to 
expert pathologists is constrained, such as in Bangladesh (13, 14). 
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Arsenic contamination of groundwater in Bangladesh is considered 
to be the largest mass poisoning of a population in history by the 
World Health Organization, with an estimated 35 to 77 million 
Bangladeshi people having been chronically exposed to arsenic 
through drinking water (15–18). Arsenic toxicity is closely depen-
dent on the amount of ingestion, and once consumed, 40% to 60% 
of the arsenic is retained in the human body and passes slowly into 
the skin, resulting in malignancies, namely nonmelanoma skin cancer 
(NMSC; refs. 15, 19). More than 95% of NMSC cases consist of basal- 
cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). 
The former is a slow-growing, locally invasive epidermal tumor. The 
latter arises from dysplastic epidermal keratinocytes. SCC can be ei-
ther in situ (Bowen disease) or invasive. Bowen disease is generally 
considered a low-grade form of SCC, with a reported risk of pro-
gression to invasive SCC of up to 3% (20–22). Current evidence 
supports that the delay in detection is the main underlying cause of 
aggressive tumor behavior and subsequent morbidity in patients with 
NMSC (20, 23). Hence, early and precise detection is critical for 
controlling disease progression and could lead to a substantially 
higher success rate in treatment. Usually, both types are readily 
identified by a pathologist in a timely manner, and in this situation, 
patients would benefit from timely treatment. However, in resource- 
limited settings, such accurate and timely detection becomes a chal-
lenge due to the limited number of expert pathologists, resulting in 
affected individuals having a poor prognosis. In Bangladesh (and 
many other countries), as predisposing exposure and susceptibility are 
difficult to eradicate, people who are chronically exposed to arsenic 
through consuming contaminated water are deemed at high risk of 
NMSC and other health consequences (23). 

In this study, we evaluated the performance of three FMs: Prov- 
GigaPath (9), UNI (10), and PRISM (arXiv 2405.10254), for the 
diagnosis of NMSC, comparing their diagnostic performance 
against a standard ResNet18 tile encoder baseline (24). Using 
deidentified NMSC hematoxylin and eosin (H&E)–stained WSIs 
from the Bangladesh Vitamin E and Selenium Trial (BEST), col-
lected by the Institute for Population and Precision Health at the 
University of Chicago, we evaluated each FM’s ability to classify 
NMSC subtypes at the whole-slide level. This involved extracting 
tile embeddings from the FMs, aggregating them using standard 
methods such as global average pooling (GAP) and attention- 
based deep multiple instance learning (ABMIL; ref. 25), as well as 
FM-specific aggregation techniques. These aggregated slide-level 
embeddings were then input into downstream classifiers [logistic 
regression (LR), XGBoost (26), or a shallow multilayer perceptron 
(MLP)] for final subtype prediction. Details of these methods are 
provided in Table 1. 

Materials and Methods 
Data source 

This study utilized 2,130 H&E WSIs of 553 NMSC biopsies from 
455 patients. These samples were collected by the BEST. BEST is a 
2 � 2 factorial randomized prevention trial of 6-year daily supple-
mentation of vitamin E and selenium among 7,000 participants 
from two regions (Araihazar and Matlab) in Bangladesh (27). 
NMSC was ascertained at each biennial in-person follow-up exam of 
all BEST participants who had undergone three levels of evaluation 
(first by research physicians, then by senior physicians, and finally 
by an expert dermatologist) before biopsies were conducted on their 
suspicious lesions. Smaller lesions (diameter <5 mm) were punch- 
biopsied, and larger lesions (diameter ≥5 mm) were excised. Among 

individuals with multiple biopsy-eligible lesions, the lesion most 
concerning for malignancy was biopsied. When an individual de-
veloped lesions at different time points, biopsies were collected at 
each time point. Formalin-fixed biopsy tissues were processed at a 
single specialized surgical pathology laboratory in Dhaka, Bangla-
desh, and processed into H&E slides. Each biopsy generated an 
average of four slides. We note that the overall quality of these slides 
was generally below that required in accredited diagnostic pathology 
labs in the United States. These slides were transported to the Uni-
versity of Chicago Human Tissue Resource Center Core Facility 
(RRID: SCR_019199), scanned by a Leica Aperio ScanScope XT at 
20� magnification (0.5 MPP), and saved in the SVS format for 
analysis. The final dataset we used in our experiments contains a 
majority of benign cases with Bowen disease as the next most prev-
alent class, followed by BCC, and finally invasive SCC (Table 2). All 
data were collected with approval from the Institutional Review 
Boards of the University of Chicago, locally from the Bangladesh 
Medical Research Council, and from the International Centre for 
Diarrhoeal Disease Research, Bangladesh, in accordance with the 
guidelines set by the US Common Rule and the Declaration of Hel-
sinki. All participants provided written informed consent. Patients 
with identified tumors were provided standard of care through the 
UChicago Research Bangladesh Community Hospital, as well as 
through regional tertiary hospitals with referrals. 

Ascertainment of NMSC 
All WSIs were given a diagnosis by a dermatopathologist (C.R. 

Shea) from the Section of Dermatology at the University of Chicago 
Medical Center. The diagnosis included whether there was an in-
dication for NMSC and, if so, the histopathologic subtype of NMSC. 
Of note, our specimen bank did not include any actinic keratoses; 
this may reflect the generally dark skin pigmentation (Fitzpatrick 
types V and VI) of the Bangladeshi study population, in which 
actinic keratoses are rare. 

Data preprocessing 
For input into the FMs, the WSIs were preprocessed into col-

lections of nonoverlapping 256 � 256 tiles. We utilized Prov- 
GigaPath’s preprocessing toolbox, which segmented each WSI into 
foreground and background using Otsu’s method (28) to determine 
a threshold for foreground pixels based on average luminance for 
each pixel across the channel dimension and a fixed tile occupancy 
threshold of 0.1. Tiles with occupancy below the threshold were 
discarded to ensure that only tiles containing tissue were retained 
and used in downstream tasks. Preprocessing of the 2,130 WSIs 
resulted in 4,316,353 image tiles. 

Framework 
To obtain a slide-level classification, FM tile encoders were first 

used to generate tile embeddings. Each FM’s tile encoder was run 
according to the specific model’s documentation, including pre-
scribed image transformations. For comparison with ResNet18 as a 
tile encoder, tiles were center-cropped to 224 px squares per 
channel, normalized using ImageNet values, and embedded using 
ResNet18 pretrained on ImageNet. For FMs that included an ad-
ditional slide aggregator (Prov-GigaPath and PRISM), slide em-
beddings were generated using the methods outlined in their 
respective documentation. For Prov-GigaPath, two sets of slide 
embeddings were generated: one using the [CLS] token from the 
final model layer and the other using GAP (which we refer to as 
“pool”) of all contextualized tile embeddings output by the final 

AACRJournals.org Cancer Epidemiol Biomarkers Prev; 34(7) July 2025 1081 

Improved Diagnosis of NMSC in Resource-Limited Settings 
D

ow
nloaded from

 http://aacrjournals.org/cebp/article-pdf/34/7/1080/3623132/epi-25-0132.pdf by guest on 01 August 2025

https://aacrjournals.org/


model layer. For each FM tile encoder, we additionally develop our 
own slide aggregators over precomputed tile embeddings. The 
simplest of these is GAP of tile embeddings into a single-slide 
embedding. Alternatively, we train a joint aggregator–classifier us-
ing ABMIL and a three-layer MLP classifier. Lastly, for each slide 
aggregator, the slide embeddings are used to train a multinomial LR, 
XGBoost, and a three-layer MLP classifier. Our overall classification 
framework is outlined in Fig. 1. For all FM tile encoders and slide 
aggregators, we use the models as is with no additional fine-tuning, 
only training models over the frozen tile- or slide-level embeddings. 

As the output of our pipeline resulted in slide-level classifications, 
although pathologist labels were given at the biopsy level, we pro-
duced biopsy-level classifications by averaging predicted slide-level 
cancer-type probabilities across all slides for each biopsy. 

All deep learning models we studied were implemented using 
Python 3.10.14 (RRID: SCR_008394) and PyTorch 2.4.1 (RRID: 
SCR_018536). For ABMIL- or MLP-based models, a maximum of 
30 epochs were used for training with gradient accumulation over 
16 slides. A learning rate of 1e�5 was used with an AdamW opti-
mizer over cross-entropy loss of pathologist-labeled diagnoses. 
Graphics processing unit (GPU)-accelerated inference of each FM 
tile encoder could be done using a single NVIDIA 2080 Ti, a 
consumer-grade GPU from 2018. 

Aggregation methods 
Typically, feature extraction methods that output whole-image 

classifications rely on consistent input sizes in terms of image sizes 
and the number of image tiles. For WSIs, their size, shape, and 
number of foreground tiles can vary drastically; in the BEST dataset, 
foreground tile counts from a single WSI ranged from 82 to 
38,404 tiles. This presents a major challenge to the efficient classi-
fication of WSIs. To overcome this, we considered three aggregation 
methods: GAP, ABMIL, and FM-specific aggregators. 

GAP is the simplest of these methods. Tile embeddings for a 
given WSI were stacked as row vectors into a single matrix. The 
slide embedding is then given by uniformly averaging the tile 
embeddings across all rows. An implicit assumption of GAP is that 
all tile embeddings have equal importance. 

ABMIL challenges this by computing a weighted average of tile 
embeddings, assigning “importance” to each tile depending on its 
usefulness for the model in determining a diagnosis. ABMIL learns 
this weighting according to the specific data it is trained on, unlike 
näıve aggregation methods such as GAP. Additionally, visualization 
of the tile weighting, via an attention heatmap, helps provide model 
explainability. One specific requirement of ABMIL is representing the 
2D layout of tiles in a 1D sequence. In our implementation, we 
encoded tile positions by adding 2D sinusoidal positional embeddings 
to the tile embedding vectors prior to input into the MIL module. 
This is similar to the positional embedding used by Prov-GigaPath. 
Experiments using ABMIL included both gated and ungated imple-
mentations (in which gated attempts to boost model expressiveness), 
as well as 1 or 8 parallel attention branches, in which 8 was chosen to 
match the original transformer implementation with 8 attention 
heads (25, 29). A fully connected layer was then used to project the 
attention output to the original input embedding dimension. We 
trained each ABMIL module jointly with an MLP classification head 
to provide a well-defined training objective. 

Both Prov-GigaPath and PRISM include slide aggregators for use 
in downstream slide-level tasks, which we used directly as 

Table 2. Dataset characteristics broken down by NMSC subtype 
at the individual patient level and the biopsy level. 

Data characteristics 

NMSC Type Benign Bowen BCC SCC Total 

Patients, n (%) 210 (46) 140 (31) 85 (19) 20 (4) 455 (100) 
Biopsies, n (%) 229 (41) 171 (31) 116 (21) 37 (7) 553 (100) 

NOTE: Patients with multiple biopsies were assigned the most frequent cancer 
type across all their biopsies. 

Table 1. Important concepts and terms used in this study. 

FMs 
Prov-GigaPath Prov-GigaPath is a vision model developed by 

Microsoft, consisting of a tile encoder and a slide 
aggregator, and was trained on 171,189 WSIs. Its 
“tile encoder” is a vision transformer (ViT) with 
1.1 billion parameters, trained using the DINOv2 self- 
supervised learning algorithm. Its “slide 
aggregator” is a LongNet (a transformer that uses 
dilated attention for long sequences) trained using 
masked autoencoding. Slide-level embeddings are 
produced either by GAP over the contextualized tile 
embeddings output by the LongNet or by using the 
embedding of a specialized [CLS] token. 

UNI UNI is a vision model developed by the Mahmood Lab 
at Brigham and Women’s Hospital, consisting only 
of a tile encoder, and was trained on more than 
100,000 WSIs. Its “tile encoder” is a ViT with 
303 million parameters, trained using DINOv2. 

PRISM PRISM is a vision-language model developed by 
Paige, consisting of a tile encoder and a slide 
aggregator. For our study, we only use the vision 
components of the model. Its “tile encoder” is the 
Virchow model, also developed by Paige, a ViT with 
631 million parameters trained using DINOv2 on 
1.5 million WSIs. Its “slide aggregator” is a perceiver 
model trained jointly with a text model on more 
than 587 WSIs using both contrastive and 
generative objectives. Slide-level embeddings are 
produced by using the embedding of a specialized 
[CLS] token. 

Aggregation methods 
GAP GAP produces a single slide-level embedding by 

averaging all tile embeddings. 

ABMIL ABMIL aggregates tile embeddings by creating a 
weighted average embedding. Weights are 
determined using a learned attention mechanism. 

Model-specific 
slide 
aggregator 

Both Prov-GigaPath and PRISM have model-specific 
slide aggregators, described above. 

Classification methods 
LR Multinomial LR, or softmax regression, applies LR to 

classification problems with more than two classes. 

XGBoost XGBoost is a gradient boosting algorithm that uses an 
ensemble of multiple simple decision trees to 
generate predictions. 

MLP An MLP is a feedforward, fully connected neural 
network. In our case, we use a network with three 
hidden layers of dimensions 1,024, 512, and 256 and 
a final classification layer of dimension 4. 
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prescribed in each model’s documentation. Prov-GigaPath uses a 
LongNet (arXiv 2307.02486) vision transformer architecture for its 
slide aggregator, utilizing a resource-efficient dilated self-attention 
mechanism to control for long tile sequence lengths. The LongNet 
produces contextualized tile embeddings, gathering relevant infor-
mation from each input tile embedding and the rest of the tiles in 
the sequence. The final slide-level embedding is either the [CLS] 
token or the average output contextualized tile embedding from 
the output of the final layer. PRISM uses a perceiver architecture 
for its slide aggregator. The perceiver architecture handles vari-
able sequence length by projecting input into a fixed-length latent 
sequence through a cross-attention module that uses a latent query 
matrix parameterized by the model (30). PRISM utilizes a latent 
dimension of 512, plus an additional dimension for the [CLS] token. 
The final slide-level embedding is the [CLS] token output from the 
final layer of the perceiver. 

Classification methods 
To focus on resource-constrained environments, we explored 

popular, resource-efficient classification methods for the task of NMSC 
classification: multinomial LR, XGBoost, and a shallow MLP. For LR, 
we used LogisticRegression from scikit-learn (RRID: SCR_002577) with 
the SAGA solver, L2 regularization, and 1,000 maximum iterations. For 
XGBoost, we used XGBClassifier from XGBoost (RRID: SCR_021361) 
with default hyperparameters and a softmax objective. Finally, the 

shallow MLP was implemented with three hidden layers of dimensions 
1,024,512, and 256, regardless of the input dimension to the MLP. MLP 
models were implemented as described above. The number of layers 
and their dimensions were chosen based on empirical experiments to 
balance model complexity and performance. 

Fivefold cross-validation and training 
All experiments were repeated using fivefold cross-validation, 

with four folds used for training and one fold used for validation. 
As multiple biopsies were taken from some patients, it was vital to 
ensure that there was no patient-specific data leakage between 
folds. Folds were, therefore, constructed by splitting the full 
dataset by patient and stratifying by the target variable (i.e., NMSC 
classification). This ensures that all data from a single patient are 
contained within a single fold, preventing data leakage between 
training and validation sets. The same folds were used for all 
experiments. 

For experiments in which slide-level embeddings were 
available, we trained the MLP, LR, and XGBoost classifiers 
using the embeddings as is, with no transformations or nor-
malization applied. For experiments in which we also trained 
an aggregator, the aggregator was trained end to end with the 
MLP classification head, and all training was performed using 
unmodified tile embeddings with no transformations or nor-
malization applied. 
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Figure 1. 
Overview of generating whole-slide embeddings using FMs. Each WSI is split into 256 � 256 px tiles, and tiles with visible tissue are selected for further 
processing. Tile features are extracted by a tile encoder, tile embeddings for a WSI are aggregated into a slide embedding, and NMSC is classified using the slide- 
level embedding. Tile aggregation methods include ABMIL, FM-specific aggregators, or GAP. Classification is performed using LR, XGBoost, or a shallow MLP. ViT, 
vision transformer. 
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Evaluation 
Evaluation was conducted using the area under the receiver op-

erating characteristic curve (AUROC). Metrics were calculated us-
ing a one-vs-rest strategy for each cross-validation fold on the fold 
reserved for validation. This resulted in classification metrics for 
each cancer type on each fold, for a set of 20 results per experiment. 
Pairwise comparison of experiment results was performed using a 
one-sided Wilcoxon signed-rank test. A weighted mean AUROC 
was calculated by taking the sum of the individual AUROC values 
from one-vs-rest evaluations, weighted by the respective class 
proportion. 

Attention heatmap visualization 
For slide aggregators that utilize an attention mechanism, the 

attention scores from the final layer were extracted from the 
models to produce heatmap visualizations of the attention scores. 
These heatmaps were overlaid on the original WSIs. This high-
lights regions of the WSI that each model considers most im-
portant for its classification decision, providing interpretability to 
a model’s predictions. 

Few-shot framework 
For our few-shot annotation framework, we first derived 

representative tiles for the types of tissue we aim to classify. 
Specifically, we derived representative tiles for invasive SCC, 
Bowen disease, superficial BCC, nodular BCC, epidermis, der-
mis, subcutis, and artifact. These classes are an extension of the 
four classes used in the zero-shot framework due to the stark 
difference in appearance of tissue between, for example, dermis 
and epidermis. As a result, the use of seven classes enables the 
generation of finer-grained representative embeddings. Repre-
sentative tiles for these seven classes were extracted from man-
ually annotated ROIs across five samples spanning the different 
cancer types. The ROIs were broadly annotated as quadrangular 
bounding boxes surrounding the tissues of interest. The ROIs 
were annotated by a medical student and reviewed by an expert 
dermatopathologist (C.R. Shea). 

We extract tiles from each ROI and embed each tile using the tile 
encoder for a given FM. As the number of representative tiles per 
ROI depends on the size of the ROI, we apply GAP to all extracted 
tile embeddings across each class to derive one representative em-
bedding per class. To do few-shot annotation at inference time, we 
classify tiles from the sample WSI as the class in which the repre-
sentative embedding is most similar to the inference tile embedding, 
as measured by the dot product between embeddings. 

Data availability 
The code developed for this study is publicly available on GitHub: 

https://github.com/sjne09/akdslab-skin-cancer. Due to patient pri-
vacy concerns related to a vulnerable population, the WSI dataset 
cannot be made publicly available. However, data access may be 
granted upon reasonable request to the corresponding author and is 
subject to appropriate data use agreements. 

Results 
We first sought to identify the optimal combination of tile em-

bedding aggregation strategy and downstream classification model 
for each pathology FM evaluated (Fig. 2A). We observe that for 
UNI- and Prov-GigaPath-derived tile embeddings, ABMIL aggre-
gation with MLP classification attains the highest weighted mean 

AUROC across all test splits (UNI: mean AUROC ¼ 0.913, 
P < 0.001; Prov-GigaPath: mean AUROC ¼ 0.908, P < 0.001). For 
PRISM, an MLP trained over PRISM’s own tile aggregator outperforms 
all other methods tested for PRISM tile embeddings (mean 
AUROC ¼ 0.925, P < 0.001). Additionally, the best-performing com-
binations for each FM significantly outperformed a baseline model of 
ResNet18 trained on the BEST dataset (mean AUROC ¼ 0.805, 
P < 0.001). Notably, across all FM’s GAP aggregated embeddings or 
over Prov-GigaPath’s provided tile aggregator, the computationally 
simplest classification model using LR does better than MLP or 
XGBoost (UNI + GAP + LR: mean AUROC ¼ 0.847; Prov-GigaPath + 
GAP + LR: mean AUROC ¼ 0.828; Prov-GigaPath + GigaPathPool + 
LR: mean AUROC ¼ 0.827; Prov-GigaPath + CLS + LR: mean 
AUROC ¼ 0.803; PRISM + GAP + LR: mean AUROC ¼ 0.860). Al-
though the combinations with LR lag behind ABMIL/MLP, there is a 
surprisingly small performance gap. 

Next, we compared the subtype-specific classification perfor-
mance using the optimal aggregator/classifier combination iden-
tified for each FM (Fig. 2B). We observe that for benign 
classification, PRISM performs the best, whereas for BCC classi-
fication, all models perform comparably. However, for SCC clas-
sification, Prov-GigaPath lags behind PRISM and UNI. Yet UNI is 
worse than PRISM at distinguishing Bowen disease. 

To further investigate these performance differences, we gener-
ated confusion matrices for each FM’s optimal configuration 
(Fig. 2C). We observe that PRISM has the least confusion on actual 
benign samples. Additionally, the same is true for PRISM on actual 
SCC samples. Especially given the relationship between Bowen 
disease and SCC, we observe that PRISM predicts the fewest Bowen 
disease cases for invasive SCC samples. This may help explain 
PRISM’s strong performance in distinguishing between Bowen and 
SCC cases compared with the other FMs. However, all FMs dem-
onstrated some degree of confusion between Bowen disease and 
benign cases. 

To explore the mechanisms underlying PRISM’s strong perfor-
mance, we visualized tile-level importance using attention maps 
generated by each model’s respective optimal tile aggregator 
(Fig. 3). We extracted the attention maps of each model for the 
slides of benign tissue, BCC, Bowen disease, and SCC. We observed 
that the attention of the Prov-GigaPath and UNI aggregators fo-
cuses more on the epithelium while paying relatively less attention 
to the dermis. PRISM’s aggregator still focuses on epidermal re-
gions, especially those that contain cancerous tissue; however, it also 
pays greater attention to the whole-tissue sample. From an expert 
dermatopathologist’s perspective, such a broad view is necessary for 
distinguishing SCC from Bowen disease as dermal invasion can be 
an important distinguishing feature between the two. Qualitatively, 
we observed the highest concordance between expert annotations 
and model attention for PRISM. 

Finally, we evaluated our proposed few-shot annotation 
framework (Fig. 4). As PRISM tile embeddings performed most 
optimally, we used PRISM-derived embeddings for our few- 
shot annotations. After extracting the representative tile em-
beddings for our seven tissue subclasses, we visualized these 
representative embeddings by plotting their first two principal 
components (Fig. 4B). We observed a wide separation of arti-
fact embeddings and a stratification of tissue embeddings that 
seem to follow the dermatologic organization of the tissue 
types. For example, invasive SCC’s embedding is sandwiched 
between the Bowen and dermis/subcutis embeddings, reflecting 
its relationship with those tissue types. 
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Using these representative embeddings, we generated few-shot 
annotations for the same representative slides previously analyzed 
(benign, BCC, Bowen, SCC; Fig. 4C). We find that our few-shot 

annotations correctly identify tiles of each cancer type in their re-
spective slides, aligning with expert annotations of these same ROIs. 
However, we also observe misidentification of tiles. In SCC, many 
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Figure 3. 
Attention heatmap annotations for the best-performing tile aggregator of each FM, compared against expert pathologist-annotated ROIs in red. Annotations are 
shown for benign, BCC, Bowen, and SCC slides. 
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Evaluation of FM performance for classifying skin cancer types. A, Classification results with different combinations of tile aggregation and classifier models for 
each FM. B, Per-class classification results using the best combination of each FM. C, Confusion matrices for each model. 
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tiles are classified as Bowen; although this may be expected to 
confound these two classes, the identification of SCC in the BCC 
slide is less explainable. Despite these inaccuracies, the framework 
effectively highlighted relevant ROIs containing the misclassified 
tiles, demonstrating its potential for rapidly identifying areas re-
quiring closer inspection. 

Discussion 
Foundation models have revolutionized the field of computa-

tional biology, notably in the domains of protein structure pre-
diction, modeling of the genomic landscape, and precision 
medicine (30–34). This study demonstrates the successful appli-
cation of CPath FMs for NMSC classification and annotation 
using whole-slide histology images, establishing their superior-
ity over a traditional convolutional neural network baseline 
(ResNet18). Leveraging NMSC data from the BEST cohort, we 
evaluated the zero-shot classification performance of state-of-the- 
art pathology FMs. 

Our results indicate that although all evaluated FMs per-
formed well, architectural nuances and training strategies in-
fluence performance on specific tasks. When using ABMIL 
aggregation on tile embeddings from UNI and Prov-GigaPath 
(both using visual transformers pretrained with DINOv2), 

performance was comparable, suggesting that within this spe-
cific evaluation framework, differences in training data scale or 
model parameters between these two FMs did not translate to 
significant performance gains for NMSC classification. How-
ever, PRISM, utilizing its distinct perceiver-based architecture 
and native aggregation mechanism, achieved significantly 
higher overall performance. Analysis of attention heatmaps 
provided a potential explanation: PRISM’s tendency to inte-
grate information from broader tissue regions, including the 
dermis, likely facilitated better discrimination between NMSC 
subtypes, particularly the challenging distinction between 
Bowen disease and invasive SCC, in which stromal context is 
informative. We hypothesize that this broader attention pat-
tern may stem from PRISM’s multimodal training objective 
(incorporating text alongside images), which potentially en-
courages the model to learn more globally relevant features 
useful for tasks beyond simple classification, such as report 
generation (35, 36). This observation underscores the potential 
benefits of developing FM architectures that effectively inte-
grate multimodal data to model complex biological systems. 
An additional benefit observed was the FMs’ ability, particu-
larly demonstrated in the few-shot setting, to implicitly handle 
data quality issues by distinguishing tiles containing histologic 
artifacts. 
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Despite the overall strong performance, the analysis of misclas-
sification patterns revealed nuances. SCC, the least prevalent sub-
type in our dataset (4%), exhibited very few false positive 
predictions, with minimal false negatives (misclassified as benign or 
Bowen). Conversely, considerable confusion was observed between 
Bowen disease and benign cases. Pathologically, diagnosing Bowen 
disease requires identifying full-thickness epidermal keratinocytic 
atypia, which can be focal. Therefore, sampling variability in biop-
sies or inherent diagnostic subtlety in borderline cases (e.g., dis-
tinguishing Bowen from arsenical keratosis with atypia, classified as 
benign here) may contribute to this specific confusion. Addressing 
such nuanced classification challenges might require finer-grained, 
tile-level supervision or models designed for enhanced interpret-
ability, rather than relying solely on slide-level labels. 

We also stress how our few-shot annotation framework can be 
useful in computation- and expertise-limited settings. First, the 
ROIs that drive the few-shot representative examples were derived 
from clear cases of each cancer type, allowing a medical student with 
limited training to perform the initial manual annotation. Second, 
as the tile annotation uses a simple vector dot product between 
embeddings, the few-shot annotation does not require any addi-
tional training of a classifier model; no additional data are required, 
and even simple models such as LR are not needed. The only ad-
ditional computation required would be for extracting tile embed-
dings using pretrained FMs, a task that is suitable for relatively 
inexpensive, consumer-grade hardware. 

From a user perspective, we propose using few-shot annotations 
to aid personnel who must initially sort or process samples, akin to a 
technician or regional doctor without extensive pathology training. 
When presented with the few-shot annotation and original H&E, 
the annotation could assist personnel in identifying ROIs and 
making a preliminary classification. In situations where the human 
decision and the annotations differ, such cases can be escalated to a 
centralized regional facility where an expert pathologist can make a 
final classification. This would reduce the burden on the experts, 
who may be limited in number and time, relying on them only for 
confusing or difficult cases. 

Indeed, an automated system for detecting and visualizing his-
topathologic patterns of NMSC has a wide variety of applications in 
clinical settings. Considering the quick inference times of both zero- 
and few-shot applications, these FMs could be integrated into 
existing clinical management systems to automatically annotate 
histopathologic patterns on slides and provide complementary di-
agnostic opinions on challenging cases. This could expedite the 
diagnostic process for the pathologist, freeing up more time for 
them to focus on a larger number of cases and making cancer 
detection more accessible in areas where medical resources are in 
shortage. 

Although our study demonstrates promising results, there are 
several limitations to consider. First, our primary dataset is de-
rived from a single cohort (BEST), which may limit the general-
izability of our findings to other populations. Second, although we 
discuss the potential clinical utility of our approach, we ac-
knowledge that further research is needed to fully evaluate its 
integration into the existing clinical workflow in resource-limited 
settings. This includes addressing practical considerations such as 
the availability of digital pathology infrastructure. Although the 
availability of slide scanners in remote areas of low- or middle- 
income countries is a key barrier to implementing diagnostic al-
gorithms, such infrastructure is at least available in major cities, 

including Dhaka, the capital city close to our study population. 
Patients from remote areas, whose slides could be transported and 
scanned in regional medical institutions, may still benefit from a 
diagnostic algorithm, especially for patients whose cancer man-
agement could be organized locally. 

All data used in this study were deidentified to protect patient 
privacy. However, it is important to acknowledge the potential risks 
associated with the use of artificial intelligence models in healthcare, 
particularly in vulnerable populations. These risks include the po-
tential for algorithmic bias, the need for transparency and explain-
ability in model decision-making, and the importance of ensuring 
equitable access to the technology. We believe that our study takes a 
step toward addressing these concerns by demonstrating the potential 
of FMs to improve cancer diagnosis in resource-limited settings, but 
further research is needed to fully address the ethical implications of 
this technology. 

In conclusion, our work highlights the important role FMs may 
play in confronting public health challenges and exhibits a real- 
world potential for machine learning–aided cancer diagnosis. The 
advent of large-scale, pretrained FMs, such as PRISM, now pro-
vides considerable potential for prospective clinical trials to im-
prove treatment outcomes and benefit patients through early and 
precise diagnosis, especially in resource-limited settings. We 
demonstrate that FMs can outperform traditional transfer learning 
approaches for NMSC classification and that a few-shot annota-
tion framework can provide accurate and efficient ROI identifi-
cation. Future work should focus on further validation in diverse 
populations, integration into clinical workflows, and addressing 
the ethical considerations associated with the use of artificial in-
telligence in healthcare. 
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