
Why Naive Ensembles Do Not Work in Cloud Computing

Wenxuan Gao, Robert Grossman, Yunhong Gu and Philip S. Yu
Department of Computer Science
University of Illinois at Chicago

Chicago, USA
wgao5@uic.edu, grossman@uic.edu, gu@lac.uic.edu , psyu@cs.uic.edu,

Abstract. Cloud computing systems that use are designed to
scale to large numbers of loosely coupled commodity
computers (or nodes) are growing more common. In this
paper, we consider several different ways that tree-based
classifiers can be used on cloud computing systems. The
simplest way is simply to compute one or more trees
independently on each node and then to combine these to
create an ensemble. In a computer cluster containing 1000
nodes, computing 10 trees per node generates a 10,000 tree
ensemble that may over fit. In this paper, we consider
alternative approaches using random trees.

Keywords: cloud computing; ensembles of classifiers; random
trees; classification and regression trees

I. INTRODUCTION
Recently, cloud computing systems have been

developed for processing very large datasets [18,
19, 20]. Often they include a software framework
that provides a simple programming interface for
large data processing using clusters of commodity
computers. Hadoop [21] is the most common such
system. Sector/Sphere [1] is another such system.

Given a cluster of computers, it is common to
compute one or more trees on each node in the
cluster (this can be done independently), to
combine these into an ensemble, and then to score
data (i.e. apply this ensemble to make predictions)
using the ensemble. For small to medium size
clusters, this is an extremely effective technique.
On the other hand, the computer clusters used in
cloud computing can contain a thousand or more
computers, which would produce an ensemble
with 10,000 trees (if 10 trees per node in the
cluster are computed) or 100,000 trees (if 100 trees
per node are computed). Even for very large
datasets, ensembles of this size can over fit the
data.

In this paper, we consider two alternative
approaches.

Both approaches make use of random trees [2].
In the first approach called Top-k, each compute
node in the cloud builds a random tree using its
local data. These trees are then evaluated on a
common dataset and the k trees with the lowest
error are used to form an ensemble.

In the second approach called Skeleton, a
common skeleton that is built from the features but
without training data is distributed to each of the
compute nodes in the cloud. Each compute node
then uses its local data to define a classification
tree. All the local classification trees are then
returned to the central node that merges them into
a single tree (which can be done since all the trees
share the same interior node structure). To build
an ensemble, multiple skeletons are distributed.

In this paper, we introduce these two methods
and perform several experimental studies to
understand their cost, expected accuracy, and other
properties. As we will see below, the Skeleton
Algorithm is an effective method for efficiently
computing ensembles on even very large clouds.

II. BACKGROUND
In this section, we give a brief introduction to

the random decision tree algorithm and to the
Sector/Sphere system.

A. Random Decision Tree Algorithm
The random decision tree was first presented by

Wei Fan et. al. [2]. Recall that the basic algorithm
to build a decision tree uses a portion of the data
(the training dataset) and at each stage selects the
feature and cut value that maximizes the
information gain. In contrast, a random decision
tree is built in two stages. First, independently of
the training data, a feature and cut value is
randomly selected. The resulting structure is

sometimes called a tree skeleton. This is repeated
until the tree reaches the specified size. Often,
there is a requirement that at each stage a new
(previously unused) feature is selected. Second,
the training data is used to specify the appropriate
classifications (for a classification tree) or values
(for a regression tree). In general, multiple tree
skeletons are computed and scoring (i.e. prediction)
is done by combining the different trees into an
ensemble as usual.

B. Sector/Sphere
Sector is a distributed storage system that is

designed to operate over large numbers of
commodity computers [1]. Sphere is a parallel
computing framework that can access data stored
by Sector [1].

Sector/Sphere is broadly similar to the Google
File System/MapReduce framework [19, 18].

Sphere can execute User Defined Functions
(UDF) over Sector-managed data. For example,
for example a user-defined Map UDF, followed by
a system-supplied Shuffle UDF, a system-supplied
Sort UDF, and a user-defined Reduce UDF can be
used to provide the functionality of the
MapReduce parallel computing framework [18].
Sector is open source and available through
Source Forge.

In this work, we use Sector/Sphere to implement
the parallel random decision tree.

III. RELATED WORK
There is a very large literature on classification

and regression trees and it is not practical to
review it here. Broadly speaking, there are several
approaches to scaling classification and regression
trees to large data sets.

Sampling. Data sampling is often used to reduce
the size of data sets [9, 10]. With this approach,
there is the assumption that adequate tree models
can be built using a portion of the data. One of the
challenges with this approach is that large data sets
often consist of several different populations. In
this case, the data must be first explored to
determine the various populations and then
stratified sampling must be used to extract

representative samples from each of the different
populations.

Ensemble-based methods. One of the most
popular architectures for managing and analyzing
large data sets are clusters of commodity
computers. Ensembles of models have been used
frequently in practice for building models over
computer clusters consisting of loosely couple
distributed systems, beginning at least as far back
as 1995 [27]. Essentially the same approach
works over geographically distributed systems
[26]. Although there is a fairly large literature on
methods for improving the accuracy of ensemble-
based models, in practice, it can be challenging to
find a method that is broadly applicable and
consistently outperforms simple voting. Bagging
and boosting are two popular ensemble methods
that can help improve accuracy, but are usually
used for small datasets that fit into memory. An
approach for using boosting and bagging on large
data sets in a distributed environment is described
in [25].

Task-level parallelism. Several parallel
algorithms have been developed to compute
classification and regression trees using multiple
processors (that typically communicate using a
message passing protocols such as MPI) have been
developed, both when the data is assumed to be in
memory and when it is on distributed disks [12, 4,
8, 16].

Simplified parallel processing frameworks. In
practice, it can be labor intensive to develop and
code using MPI task-parallel versions of
algorithms. Recently, frameworks that use data
parallelism and provide relatively simple
primitives for building parallel algorithms have
been introduced. The best known such framework
is the MapReduce model introduced by Google
[18]. The Sphere model described above is
another example of a simplified model for coding
data parallel algorithms.

IV. PARALLEL RANDOM DECISION TREE
In this section, we describe two different

approaches for building random decision trees in
parallel over large clusters of loosely coupled
commodity computers: the Skeleton Algorithm
and Top-k Algorithm. See Table 2. Recall that
for large clouds, ensembles that contain trees from
each node in the cloud can contain too many trees
to be effective. One of the goals of both methods
is to reduce the number of trees in the ensemble.

Algorithm 1. Random Decision Tree

A. System Architecture
Before introducing the Top-k and Skeleton

methods, we briefly describe the distributed
system architecture that both methods assume

As Figure 1 shows, a central (or master) node
maintains the metadata of the files stored in the
system, and controls the running of all local (or
slave/compute) nodes. The local nodes store the
files managed by the system and process the data
upon the request of the central node. The local
nodes are usually organized into racks of
computers that are physically located in one or
more data centers. There is usually a network
switch at the top of each rack that supports the
communication within the rack. Multiple racks
are then connected to a larger network switch that
supports the communication between racks.

B. The Random Decision Tree Algorithm
Algorithm 1 is a simple summary of the

training process of the random decision tree
algorithm. The algorithm consists of two steps.
The first step (BuildTreeStructure) generates the
structure of each random tree. This is referred to as
the skeleton since the leaves do not contain class
distribution statistics. Building the skeleton does
not require any training data, but instead only
requires information about the features. In the
second step (called UpdateStatistics), the training
data is used to compute class statistics for the leaf
nodes. Below we briefly describe the
BuildTreeStructure step and UpdateStatistics step
omitting implementation details [2].

The BuildTreeStructure step builds the trees by
randomly choosing a feature for each internal node
of the tree. Discrete features can only be chosen
once, but continuous features can be chosen
multiple times. As mentioned, this stage does not
require training data. In particular, in the
distributed case, it is not necessary to move any
training data in this step.

The UpdateStatistics step is used to update the
class distribution information each time a new
training instance is read. Each leaf records for each
class the number of instances that are “classified”
through that node. Note that in the distributed case,
each computing node can complete the
UpdateStatistics step independently.

Figure 1. System Architecture

C. Top-k Algorithm
In the Top-k algorithm, each local node builds a

random tree using local data. In this method, the

Train: (S, X, N)
Data: S = {(x1, t1), …, (xn,tn)} is a training set and X =
{F1, …, Fk} is a set of features, where F is a feature
descriptor. N is the number of random decision trees.

Result: N random trees {T1, …, Tn}.
begin
 for i ∈{1,…N} do
 BuildTreeStructure (Ti, x)

end
for (x,t) ∈ S do

for i ∈{1,…N}
 UpdateStatistics (Ti, (x,t))

end
end
return {T1, …, Tn}

end

central node distributes a common dataset to each
local node. Each local node then evaluates its
local tree on this dataset and computes the error.
Each local tree then returns to the central node the
local tree and the corresponding error. In the final
step, the central node forms an ensemble using the
k random trees with the lowest error. The
remaining trees are discarded.

The common dataset that is distributed to each
local node is randomly selected from all the local
nodes and thus represents (a sample of) the entire
dataset.

A limitation of this method is that the k trees
selected only represent part of the entire dataset –
the part associated with the data on the
corresponding k nodes – and this can reduce the
accuracy of the method. The accuracy of this
method improves if prior to building the trees
some of the data from each of the nodes is
scattered to the other nodes in the cloud.
Sometimes this is called a shuffle. This is easy to
implement with the Map portion of MapReduce. It
is also easy to implement in Sphere. Perhaps
surprisingly, as we will see below, in many cases a
relatively small percentage of the entire dataset
needs to be shuffled in this way in order to
improve the accuracy significantly.

Figure 2. Top-k approach to parallel RDT

D. Skeleton Algorithm
In the skeleton algorithm, the central node

builds the skeleton of a random decision and
distributes this skeleton to all the local nodes.
Recall that constructing a skeleton does not
require any data except simply knowledge of the
features. Each local node then scans its local data
and uses the skeleton to build an actual tree. Each
local tree is then returned to the central node.
Since each local tree has the same topology it is
straightforward to combine the statistics from each
leaf node and to construct a single tree that reflects
the entire dataset. See Figure 4. Of course, an
ensemble can be built by simply scattering
multiple skeleton trees to each local node.

Another alternative is to partition the local trees
and to build a merged tree from trees in each of the
partitions. In this way, an ensemble is produced
with each tree in the ensemble reflecting data from
the local trees in its associated partition.

Note that accuracy of the tree produced by the
Skeleton Algorithm on a cloud is the same as the
accuracy of a random tree built on the entire
dataset, but much faster since the local trees can
all be computed independently on each local node
in the cloud.

Figure 3. The Skeleton algorithm Figure 4. How trees in the skeleton algorithm are mergerd.

Since merging trees on the central node in the

Skeleton Algorithm is more expensive than simply
selecting the top k trees, the Skeleton Algorithm is
more expensive to build than the Top k Algorithm.
On the other hand, as we will see in the next
section, it is usually more accurate.

V. EXPERIMENTS SETUP
In this section we describe several experimental

studies we performed comparing the Top-k
Algorithm and the Skeleton Algorithm. The
experiments used two public datasets on a cloud
consisting of four racks and evaluated the
accuracy and execution time of the two algorithms
as the number of trees, the number of nodes, and
the proportion of data shuffled among the nodes
varied.

A. Datasets
For these experiments, we used two datasets

from the UCI KDD Archive. Since these datasets
were small relative to our cloud, we replicated
them for our experiments as described below. The
first dataset was the 1999 KDD Cup dataset. We
divided this data into training and test datasets.
The raw training data was about 4 GB of
compressed binary TCP dump data from seven
weeks of network traffic.

Table 1. Data sets used (sizes are before data was replicated).

Datasets Training
instances

Test
instances

Features

1999 KDD Cup 4,898,431
(742M)

311,029
(47M)

41

Census Income 199,523
(101M)

99,762 (50M) 40

We aggregated the packets into about five

million records describing network flows.
Similarly, the two weeks of test data yielded
around two million flow records.

Our experiments were based on those flow
records. The training dataset has 494,021 records
with 22 attack types and the test dataset has
311,029 records with 37 attack types. The
prediction task was to identify those 37 attack
types in the test dataset.

We divided the original training dataset into 26
partitions determined by the protocol field in the
record and assigned each partition to a node. In
other words, we distributed the data over 26 nodes
in a single rack and the data on each node had the
same protocol field. We proceeded in this way in
order to produce a dataset in which there were
significant differences between the various local
nodes. To increase the size of the dataset, we
replicated the data on each node 100 times. After
the replication, there was about 3 GB of data on
each node. We then copied the data on the one
rack to the other three racks. The final dataset was
about 312 GB in size and had the same class
distribution as the original dataset.

The second data set we used was a census
income data set. The data set contained weighted
census data extracted from the 1994 and 1995
Current Population Surveys conducted by the U.S.
Census Bureau. The prediction task was to
determine whether a person makes over $50,000 a
year. The original data contained 40 demographic
and employment related features.

We used a subset of records that was extracted
by Barry Becker. Again, for the purpose of making
the distributed dataset heterogeneous, we
partitioned the training dataset into 26 subsets
according to each individual’s type of work and
distributed the records over 26 nodes within a
single rack. This time, we replicated the data on
each node in the rack 10,000 times to generate
about a 1 GB of data per node. As before, we then
copied the dataset to the other three racks.

B. Computing Environment
The experimental studies were done using four

racks on the Open Cloud Testbed [17]. Each rack
has 32 nodes, including 1 NFS server, 1 head
node, and 30 local or slave nodes. The head node
is a Dell 1950, dual dual-core Xeon 3.0GHz with
16GB of RAM. The slave nodes are Dell 1435s,
single dual core AMD Opteron 2.0 GHz with 4
GB of RAM and a single 1 TB disk. The 4 racks
are located in JHU (Baltimore), StarLight
(Chicago), UIC (Chicago), and Calit2 (San
Diego). A wide area 10 Gbps network connected
the four racks. For our experiments, we used 26 of
the 32 nodes on each rack.

For the experiments, we used version 1.23 of
Sector/Sphere.

C. Evaluation Metrics
We use the computation cost and error rate to

evaluate the performance of the two algorithms.
The computation cost is defined as the total
training time required to build the ensemble of
trees. For the Top-k Algorithm, the time to
sample and shuffle the sample data is taken into
account. The error rate is defined as the number of
misclassified records divided by the total number
of records.

VI. RESULT AND ANALYSIS
In this section, we report the computation cost

and error rate for the Top-k and Skeleton
algorithms as we vary the shuffle rate, the number
of nodes in the cloud, and the number of trees in
the ensemble. Since different random decision
tree vary in accuracy, we ran each test 10 times
and plotted the means of the 10 runs.

A. Impact of Shuffle Rate
In the first set of experiments, we vary the

amount of data shuffled in the Top-k Algorithm
and examine the impact on the accuracy and cost.

Accuracy. For the experiments measuring
accuracy, we did not replicate the data in the 26
partitioned datasets. We used an ensemble of 10
trees. We first computed the error rate without
any shuffling using the Top-k and the Skeleton
Algorithms. Without any shuffling, the Top-k
Algorithm has a high error rate for the both the
1999 KDD Cup dataset and the census income
dataset. In contrast, the error rate of the Skeleton
Algorithm is fairly low.

We shuffled the data by taking p% of the data
from each local node and distributing it to all the
other nodes. In this way, each node has a small
amount of data from all the other nodes. We vary
p and repeated the experiments 10 times. The
results are plotted in Fig. 5 and Fig. 6.

Figure 5. Error rate with KDDCup99 dataset by varying the shuffle rate

Figure 6. Error rate with census income dataset by varying the shuffle rate

Our experiments show that as the shuffle rate p
increases, the error rate drops gradually. This is
reasonable because as the shuffle rate increases,
the data on each local node more closely
resembles the entire dataset

For the 1999 KDD Cup dataset, when p is
above 0.1%, the Top-k Algorithm achieves
essentially the same accuracy as the Skeleton

Algorithm. On the other hand, for the census
dataset, a shuffling rate of 20% is required to
achieve the same accuracy. Since the Skeleton
Algorithm builds a tree using the entire dataset, no
no benefit is obtained by shuffling.

Computation Cost. For the experimental studies
involving the computational cost of the two
algorithms, we replicated the data as described
above: 100 times for the 1999 KDD Cup dataset
and 10,000 times for the census dataset. The
results are plotted in Figures 7 and 8. These
figures also show the cost of the shuffle.

As expected, the computation cost of the Top-K
Algorithm increases significantly as the shuffle
rate grows.

Figure 7. Computation cost for 1999 KDD Cup dataset as the shuffle rates
varies.

Figure 8. Computation cost for the census income dataset as the shuffle
rates varies.

Figure 9. Error rate with KDDCup99 dataset by varying the number of
nodes

Figure 10. Error rate with census income dataset by varying the number of
nodes

To summarize this set of experiments: when
shuffling just 0.1% of the 1999 KDD Cup dataset,
the Top-k Algorithm achieves almost the same
accuracy as the Skeleton Algorithm while taking
significantly less time. On the other hand, for the
census dataset that requires shuffling 20% of the
data to achieve the same accuracy as the Skeleton
Algorithm, the Top-K Algorithm takes
significantly longer.

B. Impact of the Size of the Cloud
In the second series of experiments, we

compare the accuracy and cost of the two
algorithms as the number of local nodes in the
cloud increases.

Accuracy. For these experiments, we increased
the size of the cloud from 1 to 4 racks. In these
experiments, the data was replicated as described
above. We fixed the shuffle rate at 0.1% for the
1999 KDD Cup dataset and at 20% for the census
dataset. As before, we used an ensemble of 10
trees. The results are plotted in Figures 9 and 10.

From the figures, we see that as expected the
accuracy stays almost the same as the size of the

cloud increases from 1 to 4 racks. This is because
simply replicating data from 1 rack to 4 racks does
not change the statistical characteristics of the
data.

Computation Cost. We next examined the
impact of the increasing the size of the cloud on
the computational cost of the two algorithms. The
data was replicated as before. The results are
plotted in Figures 11 and 12.

The figures show that the computation cost of
both the Skeleton Algorithm and the Top-k
Algorithm grow slowly as the number of racks
increases. This is mainly due to the increase in
communication overhead.

To summarize this set of experiments, there is
very little impact on the cost or accuracy of the
computation for either algorithm as the size of the
cloud increases.

Figure 11. Computation cost for 1999 KDD Cup dataset as the size of the
cloud increases.

Computation cost with cencus income dataset as the size of the cloud
increases.

Figure 12. Error rate with 1999 KDD Cup dataset as the number of tree
varies.

Figure 13. Error rate of the census income dataset as the number of tree
varies.

Figure 14. Computation cost 1999 KDD Cup dataset as the number of tree
varies.

Figure 15. Computation cost with census income dataset as the number of
tree varies.

C. Impact of Number of Trees
In [2], it is found that, in most situations, there

is little gain in accuracy when more than 10
random trees are used for classification. In the

third series of experiments we tried to verify this
rule of thumb.

Accuracy. The settings in this series of
experiments are the same as used for the accuracy

experiments described in section A of this section,
except that we fixed the shuffle rate at 1% for the
1999 KDD Cup dataset and 20% for the census
income dataset. The results are plotted in Figures
13 and 14.

Our results confirm that using more than 10
random trees provides very little improvement in
accuracy. In Figure 13, we can see when the
number of trees is less than 5, the Top-k
Algorithm is better than the Skeleton approach.
We argue that because the top-k approach always
takes the best trees to do the prediction.

Computation cost. The settings in this series of
experiments are the same as used for the
computational costs experiments described in
section A of this section, except that we fixed the
shuffle rate at 1% for the 1999 KDD Cup dataset
and 20% for the census income dataset. The
results are plotted in Figures 15 and Fig. 16.

The results show that generally the training cost
grows with the number of trees for the Skeleton
Algorithm, but is relatively constant for the Top-k
Algorithm. That is because only one random
decision tree is built on each local node for the
Top-k Algorithm, no matter how many trees are
finally used in the ensemble.

To summarize this series of experiments, for
both the Skeleton Algorithm and the Top-k
Algorithm, increasing the number of trees to more
than 10 does not significantly improve the
accuracy. Also, as expected, the computation cost
of the Skeleton Algorithm grows as the number of
trees increases, whereas the Top-k Algorithm does
not.

VII. CONCLUSIONS
As the size of cloud computing systems grow,

building naïve ensembles by computing one tree
for each local node in the cloud produces
ensembles with so many trees that the ensembles
are not effective classifiers. In this paper, we
proposed and implemented two competing
approaches: the Top-K Algorithm and the
Skeleton Algorithm. We performed several
experimental studies evaluating the accuracy and
cost of these two algorithms as we varied the size
of the cloud, the number of trees in the ensemble,

and the amount of data shuffled prior to building
the trees.

Our experiments show that the Skeleton
Algorithm creates an ensemble that provides a
consistently accurate prediction. For some
datasets, the Top-k algorithm can produce an
ensemble with comparable accuracy that is less
expensive to compute, whereas in other cases, the
Top-k Algorithm is more expensive to compute.
The difference is due to the percent p of data that
must be shuffled to achieve accuracy comparable
to the Skeleton Algorithm. If p is known and
small, the Top-k algorithm is preferable since it is
less expensive. In all other cases, the Skeleton
Algorithm is recommended.

 Top­k Skeleton

What is
distributed to
the local nodes?

A common dataset
is scattered to

local nodes, which
is selected from all
the (distributed)

data

A skeleton tree.

How is the tree
computed on
the local nodes?

Each local node
builds a random

tree
independently.
Different local
nodes have trees
with different
topologies.

The central
node builds

skeleton that is
distributed to
all local nodes.
Each local node
uses its local
data to

compute a tree.
What is

returned to
central node?

Each local node
returns a tree and
its error on a

common dataset.

Each local node
returns a tree.

How are local
trees combined?

Top‐k trees with
smallest error are
selected to form
an ensemble.

All trees are
merged into
single a tree. If
an ensemble is
desired, several
skeletons can
be scattered to
local nodes.

Cost Lower since just k
trees with the

lowest error need
to be selected.

Higher since
trees built from
local data need
to be merged.

Is the tree built
on all or on part
of the data?

On part of the
data.

On all of the
data.

Additional
information

The data can be
shuffled to
improve the
performance.

Table 2. A comparison of the Top-k and Skeleton Algorithms.

REFERENCES
[1] Y. Gu and R. Grossman, “Sector and Sphere: The Design and

Implementation of a High Performance Data Cloud”, Phil. Trans. R.
Soc. A 28 June 2009 vol. 367 no. 1897 2429-2445.

[2] W. Fan, H. Wang, P.S. Yu, and S. Ma, “Is random model better? on
its accuracy and efficiency”, Proc. 3rd IEEE Intl. Conf. on Data
Mining (ICDM-2003), Nov 2003, pp.51-58.

[3] http://sector.sourceforge.net/
[4] M. Joshi, G. Karypis and V. Kumar, "ScalParC: A New Scalable and

Efficient Parallel Classification Algorithm for Mining Large
Datasets." Proc. 1998 Intl. Parallel Processing Symp., April 1998,
pp.573-579.

[5] M.J. Zaki and C.-T. Ho (Eds.), Large-Scale Parallel Data Mining,
LNAI State-of-the-Art Survey, Vol. 1759, Springer-Verlag: Berlin,
2000.

[6] H. Kargupta and P. Chan (Eds.), Advances in Distributed and Parallel
Knowledge Discovery, AAAI Press/ MIT Press, 2000.

[7] P.S. Bradley,U. Fayyad and C. Reina, “Scaling Clustering Algorithms
to Large Databases”, Proc. 4th Intl. Conf. on Knowledge Discovery &
Data Mining (KDD98), AAAI Press, 1998, pp9-15.

[8] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A Fast Scalable
Classifier for Data Mining” In 5th Intl. Conference on Extending
Database Technology, pp.18–32, 1996.

[9] R. Musick, J. Catlett, and S. Russell, “Decision theoretic subsampling
for induction on large databases”, In Proc. of 10th Intl. Conf. on
Machine Learning, pp.212 – 219, Amherst, MA, 1993.

[10] F. Provost, D. Jensen and T. Oates, “Efficient Progressive Sampling”,
Proc. Fifth Intl. Conf. on Knowledge Discovery and Data Mining,
pp.23-32, 1999

[11] C. Moretti, K. Steinhaeuser, D. Thain and N.V. Chawla, “Scaling up
Classifiers to Cloud Computers”, In 8th IEEE Intl. Conf. on Data
Mining(ICDM08), pp.472-481, Dec 2008

[12] A. Srivastava, E. Han, V. Kumar, and V. Singh, “Parallel
Formulations of Decision-Tree Classification Algorithms,” Data
Mining and Knowledge Discovery: An Intl. Journal, vol. 3, no. 3,
September 1999, pp.237-261.

[13] E. Han, G. Karypis and V. Kumar, "Scalable Parallel Data Mining for
Association Rules", IEEE Trans. on Knowledge and Data
Engineering, Vol. 12, No. 3, May/June 2000, pp.372-390.

[14] V. Ganti, R. Ramakrishnan, and J. Gehrke, "Clustering Large
Datasets in Arbitrary Metric Spaces”, Proc. 15th Intl. Conf. on Data
Engineering, p.502, March 23-26, 1999.

[15] R. Agrawaland J.C. Shafer, “Parallel Mining of Association Rules”,
IEEE Trans. On Knowledge and Data Eng., 8(6):962-969, December
1996.

[16] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Parallel
Classifier for Data Mining”, Proc. 22nd Int. Conf. On Very Large
Databases, Morgan Kaufmann, 1996, pp.544-555

[17] http://www.opencloudconsortium.org/
[18] J. Dean and S. Ghemawat. “MapReduce: Simplied data processing on

large clusters”, In OSDI'04: 6th Symp. on Operating System Design
and Implementation, 2004.

[19] S. Ghemawat, H. Gobioff, and Shun-TakLeung. “The Google File
System”, SOSP'03, October 19–22, 2003.

[20] Amazon Web Services, http://aws.amazon.com.

[21] A. Bialecki, M. Cafarella, D. Cutting, O. O'Malley. "Hadoop: a
framework for running applications on large clusters built of
commodity hardware", http://lucene.apache.org/hadoop/, 2005

[22] A.S. Das, M. Datar, A. Garg and S. Rajaram, “Google News
Personalization: Scalable Online Collaborative Filtering”, Proc. 16th
Intl. Conf. on World Wide Web, 2007, pp.271-280.

[23] M.A. Bayir,I. H. Toroslu,A. Cosar and G. Fidan, “Smart Miner: a
new framework for mining large scale web usage data”, Proc. 18th
Intl. Conf. on World Wide Web, 2009, pp.161-170

[24] S. Zhao, J. Betz, "Corroborate and learn facts from the web", Proc.
13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, 2007, pp.995-1003.

[25] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer,
"Learning Ensembles from Bites: A Scalable and Accurate
Approach", Journal of Machine Learning, 5:421–451, 2004.

[26] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo, Distributed data
mining in credit card fraud detection, IEEE Intelligent Systems,
Volume 14, Number 6, pages 67-74, 1999.

[27] Robert L. Grossman, Haim Bodek, David Northcutt, and H. Vincent
Poor, Data Mining and Tree-based Optimization, Proceedings of the
Second International Conference on Knowledge Discovery and Data
Mining (KDD 1996), E. Simoudis, J. Han and U. Fayyad, editors,
AAAI Press, Menlo Park, California, 1996, pages 323-326.

