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Abstract.  Cloud computing systems that use are designed to 
scale to large numbers of loosely coupled commodity 
computers (or nodes) are growing more common.   In this 
paper, we consider several different ways that tree-based 
classifiers can be used on cloud computing systems.   The 
simplest way is simply to compute one or more trees 
independently on each node and then to combine these to 
create an ensemble.   In a computer cluster containing 1000 
nodes, computing 10 trees per node generates a 10,000 tree 
ensemble that may over fit.  In this paper, we consider 
alternative approaches using random trees. 

Keywords:  cloud computing; ensembles of classifiers; random 
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I.  INTRODUCTION 
Recently, cloud computing systems have been 

developed for processing very large datasets [18, 
19, 20]. Often they include a software framework 
that provides a simple programming interface for 
large data processing using clusters of commodity 
computers.  Hadoop [21] is the most common such 
system.   Sector/Sphere [1] is another such system.  

Given a cluster of computers, it is common to 
compute one or more trees on each node in the 
cluster (this can be done independently), to 
combine these into an ensemble, and then to score 
data (i.e. apply this ensemble to make predictions) 
using the ensemble.  For small to medium size 
clusters, this is an extremely effective technique.   
On the other hand, the computer clusters used in 
cloud computing can contain a thousand or more 
computers, which would produce an ensemble 
with 10,000 trees (if 10 trees per node in the 
cluster are computed) or 100,000 trees (if 100 trees 
per node are computed).   Even for very large 
datasets, ensembles of this size can over fit the 
data.    

In this paper, we consider two alternative 
approaches. 

 

Both approaches make use of random trees [2].   
In the first approach called Top-k, each compute 
node in the cloud builds a random tree using its 
local data.  These trees are then evaluated on a 
common dataset and the k trees with the lowest 
error are used to form an ensemble.   

In the second approach called Skeleton, a 
common skeleton that is built from the features but 
without training data is distributed to each of the 
compute nodes in the cloud.  Each compute node 
then uses its local data to define a classification 
tree.  All the local classification trees are then 
returned to the central node that merges them into 
a single tree (which can be done since all the trees 
share the same interior node structure). To build 
an ensemble, multiple skeletons are distributed.   

In this paper, we introduce these two methods 
and perform several experimental studies to 
understand their cost, expected accuracy, and other 
properties.  As we will see below, the Skeleton 
Algorithm is an effective method for efficiently 
computing ensembles on even very large clouds. 

 

II. BACKGROUND 
In this section, we give a brief introduction to 

the random decision tree algorithm and to the 
Sector/Sphere system. 

A. Random Decision Tree Algorithm 
The random decision tree was first presented by 

Wei Fan et. al. [2].  Recall that the basic algorithm 
to build a decision tree uses a portion of the data 
(the training dataset) and at each stage selects the 
feature and cut value that maximizes the 
information gain.  In contrast, a random decision 
tree is built in two stages.  First, independently of 
the training data, a feature and cut value is 
randomly selected.  The resulting structure is 



sometimes called a tree skeleton. This is repeated 
until the tree reaches the specified size.  Often, 
there is a requirement that at each stage a new 
(previously unused) feature is selected.  Second, 
the training data is used to specify the appropriate 
classifications (for a classification tree) or values 
(for a regression tree).  In general, multiple tree 
skeletons are computed and scoring (i.e. prediction) 
is done by combining the different trees into an 
ensemble as usual. 

 

B. Sector/Sphere 
Sector is a distributed storage system that is 

designed to operate over large numbers of 
commodity computers [1].  Sphere is a parallel 
computing framework that can access data stored 
by Sector [1].    

Sector/Sphere is broadly similar to the Google 
File System/MapReduce framework [19, 18]. 

Sphere can execute User Defined Functions 
(UDF) over Sector-managed data.  For example, 
for example a user-defined Map UDF, followed by 
a system-supplied Shuffle UDF, a system-supplied 
Sort UDF, and a user-defined Reduce UDF can be 
used to provide the functionality of the 
MapReduce parallel computing framework [18].  
Sector is open source and available through 
Source Forge. 

In this work, we use Sector/Sphere to implement 
the parallel random decision tree. 

III. RELATED WORK 
There is a very large literature on classification 

and regression trees and it is not practical to 
review it here.  Broadly speaking, there are several 
approaches to scaling classification and regression 
trees to large data sets.    
 
Sampling. Data sampling is often used to reduce 
the size of data sets [9, 10]. With this approach, 
there is the assumption that adequate tree models 
can be built using a portion of the data.  One of the 
challenges with this approach is that large data sets 
often consist of several different populations.  In 
this case, the data must be first explored to 
determine the various populations and then 
stratified sampling must be used to extract 

representative samples from each of the different 
populations.   
 
Ensemble-based methods. One of the most 
popular architectures for managing and analyzing 
large data sets are clusters of commodity 
computers. Ensembles of models have been used 
frequently in practice for building models over 
computer clusters consisting of loosely couple 
distributed systems, beginning at least as far back 
as 1995 [27].  Essentially the same approach 
works over geographically distributed systems 
[26].  Although there is a fairly large literature on 
methods for improving the accuracy of ensemble-
based models, in practice, it can be challenging to 
find a method that is broadly applicable and 
consistently outperforms simple voting.  Bagging 
and boosting are two popular ensemble methods 
that can help improve accuracy, but are usually 
used for small datasets that fit into memory. An 
approach for using boosting and bagging on large 
data sets in a distributed environment is described 
in [25].  
 
Task-level parallelism. Several parallel 
algorithms have been developed to compute 
classification and regression trees using multiple 
processors (that typically communicate using a 
message passing protocols such as MPI) have been 
developed, both when the data is assumed to be in 
memory and when it is on distributed disks [12, 4, 
8, 16].   
 
Simplified parallel processing frameworks.  In 
practice, it can be labor intensive to develop and 
code using MPI  task-parallel versions of 
algorithms.   Recently, frameworks that use data 
parallelism and provide relatively simple 
primitives for building parallel algorithms have 
been introduced.  The best known such framework 
is the MapReduce model introduced by Google 
[18].  The Sphere model described above is 
another example of a simplified model for coding 
data parallel algorithms. 

 
 



IV. PARALLEL RANDOM DECISION TREE 
In this section, we describe two different 

approaches for building random decision trees in 
parallel over large clusters of loosely coupled 
commodity computers: the Skeleton Algorithm 
and Top-k Algorithm.  See Table 2.  Recall that 
for large clouds, ensembles that contain trees from 
each node in the cloud can contain too many trees 
to be effective.   One of the goals of both methods 
is to reduce the number of trees in the ensemble. 

 

 
 

Algorithm 1.  Random Decision Tree 

A. System Architecture 
Before introducing the Top-k and Skeleton 

methods, we briefly describe the distributed 
system architecture that both methods assume 

As Figure 1 shows, a central (or master) node 
maintains the metadata of the files stored in the 
system, and controls the running of all local (or 
slave/compute) nodes. The local nodes store the 
files managed by the system and process the data 
upon the request of the central node. The local 
nodes are usually organized into racks of 
computers that are physically located in one or 
more data centers.  There is usually a network 
switch at the top of each rack that supports the 
communication within the rack.  Multiple racks 
are then connected to a larger network switch that 
supports the communication between racks.  

B. The Random Decision Tree Algorithm 
Algorithm 1 is a simple summary of the 

training process of the random decision tree 
algorithm. The algorithm consists of two steps. 
The first step (BuildTreeStructure) generates the 
structure of each random tree. This is referred to as 
the skeleton since the leaves do not contain class 
distribution statistics.  Building the skeleton does 
not require any training data, but instead only 
requires information about the features.  In the 
second step (called UpdateStatistics), the training 
data is used to compute class statistics for the leaf 
nodes.  Below we briefly describe the 
BuildTreeStructure step and UpdateStatistics step 
omitting implementation details [2].  

The BuildTreeStructure step builds the trees by 
randomly choosing a feature for each internal node 
of the tree.  Discrete features can only be chosen 
once, but continuous features can be chosen 
multiple times. As mentioned, this stage does not 
require training data. In particular, in the 
distributed case, it is not necessary to move any 
training data in this step. 

The UpdateStatistics step is used to update the 
class distribution information each time a new 
training instance is read. Each leaf records for each 
class the number of instances that are “classified” 
through that node. Note that in the distributed case, 
each computing node can complete the 
UpdateStatistics step independently. 

 
Figure 1.  System Architecture 

C. Top-k Algorithm 
In the Top-k algorithm, each local node builds a 

random tree using local data.  In this method, the 

 
Train: (S, X, N) 
Data: S = {(x1, t1), …, (xn,tn)} is a training set and X = 
{F1, …, Fk} is a set of features, where F is a feature 
descriptor.  N is the number of random decision trees. 
 
Result: N random trees {T1, …, Tn}.    
begin 
      for i ∈{1,…N} do 
 BuildTreeStructure (Ti, x) 

end 
for (x,t) ∈ S do  

for i ∈{1,…N}   
       UpdateStatistics  (Ti, (x,t))  

end 
end 
return  {T1, …, Tn} 

end 



central node distributes a common dataset to each 
local node.  Each local node then evaluates its 
local tree on this dataset and computes the error.  
Each local tree then returns to the central node the 
local tree and the corresponding error.  In the final 
step, the central node forms an ensemble using the 
k random trees with the lowest error.   The 
remaining trees are discarded. 

The common dataset that is distributed to each 
local node is randomly selected from all the local 
nodes and thus represents (a sample of) the entire 
dataset. 

A limitation of this method is that the k trees 
selected only represent part of the entire dataset – 
the part associated with the data on the 
corresponding k nodes – and this can reduce the 
accuracy of the method.  The accuracy of this 
method improves if prior to building the trees 
some of the data from each of the nodes is 
scattered to the other nodes in the cloud. 
Sometimes this is called a shuffle. This is easy to 
implement with the Map portion of MapReduce. It 
is also easy to implement in Sphere. Perhaps 
surprisingly, as we will see below, in many cases a 
relatively small percentage of the entire dataset 
needs to be shuffled in this way in order to 
improve the accuracy significantly. 
 

 

 

Figure 2.  Top-k approach to parallel RDT 

 

D. Skeleton Algorithm 
In the skeleton algorithm, the central node 

builds the skeleton of a random decision and 
distributes this skeleton to all the local nodes.  
Recall that constructing a skeleton does not 
require any data except simply knowledge of the 
features.  Each local node then scans its local data 
and uses the skeleton to build an actual tree.   Each 
local tree is then returned to the central node.  
Since each local tree has the same topology it is 
straightforward to combine the statistics from each 
leaf node and to construct a single tree that reflects 
the entire dataset.  See Figure 4.  Of course, an 
ensemble can be built by simply scattering 
multiple skeleton trees to each local node.    

Another alternative is to partition the local trees 
and to build a merged tree from trees in each of the 
partitions.  In this way, an ensemble is produced 
with each tree in the ensemble reflecting data from 
the local trees in its associated partition. 

Note that accuracy of the tree produced by the 
Skeleton Algorithm on a cloud is the same as the 
accuracy of a random tree built on the entire 
dataset, but much faster since the local trees can 
all be computed independently on each local node 
in the cloud.   

  



Figure 3.   The Skeleton algorithm  Figure 4.  How trees in the skeleton algorithm are mergerd. 

 
Since merging trees on the central node in the 

Skeleton Algorithm is more expensive than simply 
selecting the top k trees, the Skeleton Algorithm is 
more expensive to build than the Top k Algorithm.  
On the other hand, as we will see in the next 
section, it is usually more accurate. 

 
 

V. EXPERIMENTS SETUP 
In this section we describe several experimental 

studies we performed comparing the Top-k 
Algorithm and the Skeleton Algorithm.  The 
experiments used two public datasets on a cloud 
consisting of four racks and evaluated the 
accuracy and execution time of the two algorithms 
as the number of trees, the number of nodes, and 
the proportion of data shuffled among the nodes 
varied. 

A. Datasets 
For these experiments, we used two datasets 

from the UCI KDD Archive.  Since these datasets 
were small relative to our cloud, we replicated 
them for our experiments as described below.  The 
first dataset was the 1999 KDD Cup dataset.  We 
divided this data into training and test datasets. 
The raw training data was about 4 GB of 
compressed binary TCP dump data from seven 
weeks of network traffic. 

 
 
 

Table 1.  Data sets used (sizes are before data was replicated). 

Datasets Training 
instances 

Test 
instances 

Features 

1999 KDD Cup 4,898,431 
(742M) 

311,029 
(47M) 

41 

Census Income 199,523  
(101M) 

99,762 (50M) 40 

 
We aggregated the packets into about five 

million records describing network flows.  
Similarly, the two weeks of test data yielded 
around two million flow records. 

Our experiments were based on those flow 
records. The training dataset has 494,021 records 
with 22 attack types and the test dataset has 
311,029 records with 37 attack types. The 
prediction task was to identify those 37 attack 
types in the test dataset. 

We divided the original training dataset into 26 
partitions determined by the protocol field in the 
record and assigned each partition to a node.  In 
other words, we distributed the data over 26 nodes 
in a single rack and the data on each node had the 
same protocol field.  We proceeded in this way in 
order to produce a dataset in which there were 
significant differences between the various local 
nodes.  To increase the size of the dataset, we 
replicated the data on each node 100 times.  After 
the replication, there was about 3 GB of data on 
each node.  We then copied the data on the one 
rack to the other three racks.  The final dataset was 
about 312 GB in size and had the same class 
distribution as the original dataset.   



The second data set we used was a census 
income data set. The data set contained weighted 
census data extracted from the 1994 and 1995 
Current Population Surveys conducted by the U.S. 
Census Bureau. The prediction task was to 
determine whether a person makes over $50,000 a 
year. The original data contained 40 demographic 
and employment related features. 

We used a subset of records that was extracted 
by Barry Becker. Again, for the purpose of making 
the distributed dataset heterogeneous, we 
partitioned the training dataset into 26 subsets 
according to each individual’s type of work and 
distributed the records over 26 nodes within a 
single rack. This time, we replicated the data on 
each node in the rack 10,000 times to generate 
about a 1 GB of data per node.  As before, we then 
copied the dataset to the other three racks. 

B. Computing Environment 
The experimental studies were done using four 

racks on the Open Cloud Testbed [17]. Each rack 
has 32 nodes, including 1 NFS server, 1 head 
node, and 30 local or slave nodes. The head node 
is a Dell 1950, dual dual-core Xeon 3.0GHz with 
16GB of RAM. The slave nodes are Dell 1435s, 
single dual core AMD Opteron 2.0 GHz with 4 
GB of RAM and a single 1 TB disk. The 4 racks 
are located in JHU (Baltimore), StarLight 
(Chicago), UIC (Chicago), and Calit2 (San 
Diego).   A wide area 10 Gbps network connected 
the four racks.  For our experiments, we used 26 of 
the 32 nodes on each rack. 

For the experiments, we used version 1.23 of 
Sector/Sphere. 

C. Evaluation Metrics 
We use the computation cost and error rate to 

evaluate the performance of the two algorithms. 
The computation cost is defined as the total 
training time required to build the ensemble of 
trees.  For the Top-k Algorithm, the time to 
sample and shuffle the sample data is taken into 
account. The error rate is defined as the number of 
misclassified records divided by the total number 
of records. 

VI. RESULT AND ANALYSIS 
In this section, we report the computation cost 

and error rate for the Top-k and Skeleton 
algorithms as we vary the shuffle rate, the number 
of nodes in the cloud, and the number of trees in 
the ensemble.  Since different random decision 
tree vary in accuracy, we ran each test 10 times 
and plotted the means of the 10 runs. 

A. Impact of Shuffle Rate 
In the first set of experiments, we vary the 

amount of data shuffled in the Top-k Algorithm 
and examine the impact on the accuracy and cost. 

 
Accuracy. For the experiments measuring 
accuracy, we did not replicate the data in the 26 
partitioned datasets.  We used an ensemble of 10 
trees.  We first computed the error rate without 
any shuffling using the Top-k and the Skeleton 
Algorithms.  Without any shuffling, the Top-k 
Algorithm has a high error rate for the both the 
1999 KDD Cup dataset and the census income 
dataset.  In contrast, the error rate of the Skeleton 
Algorithm is fairly low. 

We shuffled the data by taking p% of the data 
from each local node and distributing it to all the 
other nodes.  In this way, each node has a small 
amount of data from all the other nodes.  We vary 
p and repeated the experiments 10 times. The 
results are plotted in Fig. 5 and Fig. 6. 

 
Figure 5.  Error rate with KDDCup99 dataset by varying the shuffle rate 



 
Figure 6.  Error rate with census income dataset by varying the shuffle rate 

Our experiments show that as the shuffle rate p 
increases, the error rate drops gradually. This is 
reasonable because as the shuffle rate increases, 
the data on each local node more closely 
resembles the entire dataset 

For the 1999 KDD Cup dataset, when p is 
above 0.1%, the Top-k Algorithm achieves 
essentially the same accuracy as the Skeleton 

Algorithm.  On the other hand, for the census 
dataset, a shuffling rate of 20% is required to 
achieve the same accuracy.  Since the Skeleton 
Algorithm builds a tree using the entire dataset, no 
no benefit is obtained by shuffling. 

 
Computation Cost. For the experimental studies 
involving the computational cost of the two 
algorithms, we replicated the data as described 
above: 100 times for the 1999 KDD Cup dataset 
and 10,000 times for the census dataset.  The 
results are plotted in Figures 7 and 8.  These 
figures also show the cost of the shuffle. 

As expected, the computation cost of the Top-K 
Algorithm increases significantly as the shuffle 
rate grows. 

Figure 7.  Computation cost for 1999 KDD Cup dataset as the shuffle rates 
varies. 

Figure 8.  Computation cost for the census income dataset as the shuffle 
rates varies.   

 



Figure 9.  Error rate with KDDCup99 dataset by varying the number of 
nodes 

Figure 10.  Error rate with census income dataset by varying the number of 
nodes 

To summarize this set of experiments: when 
shuffling just 0.1% of the 1999 KDD Cup dataset, 
the Top-k Algorithm achieves almost the same 
accuracy as the Skeleton Algorithm while taking 
significantly less time.  On the other hand, for the 
census dataset that requires shuffling 20% of the 
data to achieve the same accuracy as the Skeleton 
Algorithm, the Top-K Algorithm takes 
significantly longer. 

B. Impact of the Size of the Cloud 
In the second series of experiments, we 

compare the accuracy and cost of the two 
algorithms as the number of local nodes in the 
cloud increases. 

 
Accuracy.  For these experiments, we increased 
the size of the cloud from 1 to 4 racks.  In these 
experiments, the data was replicated as described 
above. We fixed the shuffle rate at 0.1% for the 
1999 KDD Cup dataset and at 20% for the census 
dataset.  As before, we used an ensemble of 10 
trees.  The results are plotted in Figures 9 and 10. 

From the figures, we see that as expected the 
accuracy stays almost the same as the size of the 

cloud increases from 1 to 4 racks.  This is because 
simply replicating data from 1 rack to 4 racks does 
not change the statistical characteristics of the 
data. 

 
Computation Cost.   We next examined the 
impact of the increasing the size of the cloud on 
the computational cost of the two algorithms.  The 
data was replicated as before. The results are 
plotted in Figures 11 and 12. 

The figures show that the computation cost of 
both the Skeleton Algorithm and the Top-k 
Algorithm grow slowly as the number of racks 
increases. This is mainly due to the increase in 
communication overhead. 

To summarize this set of experiments, there is 
very little impact on the cost or accuracy of the 
computation for either algorithm as the size of the 
cloud increases. 

 



Figure 11.  Computation cost for 1999 KDD Cup dataset as the size of the 
cloud increases. 

Computation cost with cencus income dataset as the size of the cloud 
increases.

                                      

Figure 12.  Error rate with 1999 KDD Cup dataset as the number of tree 
varies.    

Figure 13.  Error rate of the census income dataset as the number of tree 
varies.    

                                            

Figure 14.  Computation cost 1999 KDD Cup dataset as the number of tree 
varies. 

Figure 15.  Computation cost with census income dataset as the number of 
tree varies.    

C. Impact of Number of Trees 
In [2], it is found that, in most situations, there 

is little gain in accuracy when more than 10 
random trees are used for classification. In the 

third series of experiments we tried to verify this 
rule of thumb. 

 
Accuracy.   The settings in this series of 
experiments are the same as used for the accuracy 



experiments described in section A of this section, 
except that we fixed the shuffle rate at 1% for the 
1999 KDD Cup dataset and 20% for the census 
income dataset. The results are plotted in Figures 
13 and 14. 

Our results confirm that using more than 10 
random trees provides very little improvement in 
accuracy.  In Figure 13, we can see when the 
number of trees is less than 5, the Top-k 
Algorithm is better than the Skeleton approach. 
We argue that because the top-k approach always 
takes the best trees to do the prediction. 

 
Computation cost. The settings in this series of 
experiments are the same as used for the 
computational costs experiments described in 
section A of this section, except that we fixed the 
shuffle rate at 1% for the 1999 KDD Cup dataset 
and 20% for the census income dataset. The 
results are plotted in Figures 15 and Fig. 16. 

The results show that generally the training cost 
grows with the number of trees for the Skeleton 
Algorithm, but is relatively constant for the Top-k 
Algorithm.  That is because only one random 
decision tree is built on each local node for the 
Top-k Algorithm, no matter how many trees are 
finally used in the ensemble. 

To summarize this series of experiments, for 
both the Skeleton Algorithm and the Top-k 
Algorithm, increasing the number of trees to more 
than 10 does not significantly improve the 
accuracy. Also, as expected, the computation cost 
of the Skeleton Algorithm grows as the number of 
trees increases, whereas the Top-k Algorithm does 
not. 

VII. CONCLUSIONS 
As the size of cloud computing systems grow, 

building naïve ensembles by computing one tree 
for each local node in the cloud produces 
ensembles with so many trees that the ensembles 
are not effective classifiers. In this paper, we 
proposed and implemented two competing 
approaches: the Top-K Algorithm and the 
Skeleton Algorithm.  We performed several 
experimental studies evaluating the accuracy and 
cost of these two algorithms as we varied the size 
of the cloud, the number of trees in the ensemble, 

and the amount of data shuffled prior to building 
the trees.  

Our experiments show that the Skeleton 
Algorithm creates an ensemble that provides a 
consistently accurate prediction.  For some 
datasets, the Top-k algorithm can produce an 
ensemble with comparable accuracy that is less 
expensive to compute, whereas in other cases, the 
Top-k Algorithm is more expensive to compute.  
The difference is due to the percent p of data that 
must be shuffled to achieve accuracy comparable 
to the Skeleton Algorithm.  If p is known and 
small, the Top-k algorithm is preferable since it is 
less expensive.  In all other cases, the Skeleton 
Algorithm is recommended. 

 
 

  Top­k  Skeleton 

What is 
distributed to 
the local nodes? 

A common dataset 
is scattered to 

local nodes, which 
is selected from all 
the (distributed) 

data 

A skeleton tree. 

How is the tree 
computed on 
the local nodes? 

Each local node 
builds a random 

tree 
independently.  
Different local 
nodes have trees 
with different 
topologies.   

The central 
node builds 

skeleton that is 
distributed to 
all local nodes.  
Each local node 
uses its local 
data to 

compute a tree. 
What is 

returned to 
central node? 

Each local node 
returns a tree and 
its error on a 

common dataset. 

Each local node 
returns a tree. 

How are local 
trees combined? 

Top‐k trees with 
smallest error are 
selected to form 
an ensemble. 

All trees are 
merged into 
single a tree.  If 
an ensemble is 
desired, several  
skeletons can 
be scattered to 
local nodes. 

Cost  Lower since just k 
trees with the 

lowest error need 
to be selected. 

Higher since 
trees built from 
local data need 
to be merged. 

Is the tree built 
on all or on part 
of the data? 

On part of the 
data. 

On all of the 
data. 



Additional 
information 

The data can be 
shuffled to 
improve the 
performance.  

 

 
Table 2.  A comparison of the Top-k and Skeleton Algorithms. 

REFERENCES 
[1] Y. Gu and R. Grossman, “Sector and Sphere: The Design and 

Implementation of a High Performance Data Cloud”, Phil. Trans. R. 
Soc. A  28 June 2009   vol. 367  no. 1897  2429-2445. 

[2] W. Fan, H. Wang, P.S. Yu, and S. Ma, “Is random model better? on 
its accuracy and efficiency”, Proc. 3rd IEEE Intl. Conf. on Data 
Mining (ICDM-2003), Nov 2003, pp.51-58. 

[3]  http://sector.sourceforge.net/ 
[4] M.  Joshi, G. Karypis and V. Kumar, "ScalParC: A New Scalable and 

Efficient Parallel Classification Algorithm for Mining Large 
Datasets." Proc. 1998 Intl. Parallel Processing Symp., April 1998, 
pp.573-579. 

[5] M.J. Zaki and C.-T. Ho (Eds.), Large-Scale Parallel Data Mining, 
LNAI State-of-the-Art Survey, Vol. 1759, Springer-Verlag: Berlin, 
2000. 

[6] H. Kargupta and P. Chan (Eds.), Advances in Distributed and Parallel 
Knowledge Discovery, AAAI Press/ MIT Press, 2000. 

[7] P.S. Bradley,U. Fayyad and C. Reina, “Scaling Clustering Algorithms 
to Large Databases”, Proc. 4th Intl. Conf. on Knowledge Discovery & 
Data Mining (KDD98), AAAI Press, 1998, pp9-15. 

[8] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A Fast Scalable 
Classifier for Data Mining” In 5th Intl. Conference on Extending 
Database Technology, pp.18–32, 1996. 

[9] R. Musick, J. Catlett, and S. Russell, “Decision theoretic subsampling 
for induction on large databases”, In Proc. of 10th Intl. Conf. on 
Machine Learning, pp.212 – 219, Amherst, MA, 1993. 

[10] F. Provost, D. Jensen and T. Oates, “Efficient Progressive Sampling”, 
Proc. Fifth Intl. Conf. on Knowledge Discovery and Data Mining, 
pp.23-32, 1999 

[11] C. Moretti, K. Steinhaeuser, D. Thain and N.V. Chawla, “Scaling up 
Classifiers to Cloud Computers”, In 8th IEEE Intl. Conf. on Data 
Mining(ICDM08), pp.472-481, Dec 2008 

[12] A. Srivastava, E. Han, V. Kumar, and V. Singh, “Parallel 
Formulations of Decision-Tree Classification Algorithms,” Data 
Mining and Knowledge Discovery: An Intl. Journal, vol. 3, no. 3, 
September 1999, pp.237-261. 

[13] E. Han, G. Karypis and V. Kumar, "Scalable Parallel Data Mining for 
Association Rules", IEEE Trans. on Knowledge and Data 
Engineering, Vol. 12, No. 3, May/June 2000, pp.372-390. 

[14] V. Ganti, R. Ramakrishnan, and J. Gehrke, "Clustering Large 
Datasets in Arbitrary Metric Spaces”, Proc. 15th Intl. Conf. on Data 
Engineering, p.502, March 23-26, 1999. 

[15] R. Agrawaland J.C. Shafer, “Parallel Mining of Association Rules”, 
IEEE Trans. On Knowledge and Data Eng., 8(6):962-969, December 
1996. 

[16] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Parallel 
Classifier for Data Mining”, Proc. 22nd Int. Conf. On Very Large 
Databases, Morgan Kaufmann, 1996, pp.544-555 

[17] http://www.opencloudconsortium.org/ 
[18] J. Dean and S. Ghemawat. “MapReduce: Simplied data processing on 

large clusters”, In OSDI'04: 6th Symp. on Operating System Design 
and Implementation, 2004. 

[19] S. Ghemawat, H. Gobioff, and Shun-TakLeung.  “The Google File 
System”,  SOSP'03, October 19–22, 2003. 

[20] Amazon Web Services, http://aws.amazon.com. 

[21] A. Bialecki, M. Cafarella, D. Cutting, O. O'Malley. "Hadoop: a 
framework for running applications on large clusters built of 
commodity hardware", http://lucene.apache.org/hadoop/, 2005 

[22] A.S. Das, M. Datar, A. Garg and S. Rajaram, “Google News 
Personalization: Scalable Online Collaborative Filtering”, Proc. 16th 
Intl. Conf. on World Wide Web, 2007, pp.271-280. 

[23] M.A. Bayir,I. H. Toroslu,A. Cosar and G. Fidan, “Smart Miner: a 
new framework for mining large scale web usage data”, Proc. 18th 
Intl. Conf. on World Wide Web, 2009, pp.161-170 

[24] S. Zhao, J. Betz, "Corroborate and learn facts from the web", Proc. 
13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data 
Mining, 2007, pp.995-1003. 

[25] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, 
"Learning Ensembles from Bites: A Scalable and Accurate 
Approach", Journal of Machine Learning, 5:421–451, 2004. 

[26] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo, Distributed data 
mining in credit card fraud detection, IEEE Intelligent Systems, 
Volume 14, Number 6, pages 67-74, 1999. 

[27] Robert L. Grossman, Haim Bodek, David Northcutt, and H. Vincent 
Poor, Data Mining and Tree-based Optimization, Proceedings of the 
Second International Conference on Knowledge Discovery and Data 
Mining (KDD 1996), E. Simoudis, J. Han and U. Fayyad, editors, 
AAAI Press, Menlo Park, California, 1996, pages 323-326. 


