
Distributing the Sloan Digital Sky Survey Using UDT and Sector

Yunhong Gu and Robert L. Grossman
National Center for Data Mining
University of Illinois at Chicago

851 S. Morgan Street, Chicago, IL 60607 USA
yunhong@lac.uic.edu and grossman@uic.edu

Alex Szalay and Ani Thakar
The Johns Hopkins University

3701 San Martin Drive
Baltimore, MD 21218 USA

szalay@pha.jhu.edu and thakar@jhu.edu

Abstract

In this paper, we describe a peer-to-peer storage sys-
tem called Sector that is designed to access and transport
large data sets over wide area high performance networks.
We also describe our recent experience using Sector to dis-
tribute the Sloan Digital Sky Survey BESTDR4 catalog data.

1 Introduction

Providing access to large scientific data sets is a chal-
lenging problem. The problem is especially difficult if the
data sets are distributed. A number of e-science applica-
tions involve these types of data sets, including high en-
ergy physics [19], astronomy [24], and climate simulation.
Fortunately, the emergence of wide area high performance
networks and new network protocols designed to exploit the
bandwidth available on such networks is enabling new types
of approaches and solutions [10].

In this paper, we describe one such approach. We show
how a peer-to-peer system called Sector [14] can be used
to distribute large scientific data sets over wide area high
performance networks. We also describe how Sector has
been used recently to distribute data from the Sloan Digital
Sky Survey (SDSS) [24].

A common approach today, that is used in the distri-
bution of high energy physics data for example, is to use
Globus to build a data grid for managing the data [19].
A data grid uses parallel TCP (through GridFTP) for data
transport, data replication services, and grid services (and

more recently web services) to provide access to distributed
collections of data. Globus provides a full security infras-
tructure for managing distributed resources, including au-
thentication, authorization, and access controls. On the
other hand, some users, especially those interested in ac-
cessing and exploring data that is freely available, when
faced with the overhead of installing Globus and the com-
plexity of developing applications with it, would prefer a
simpler alternative. Sector is one such alternative.

We feel that Sector is innovative for the following rea-
sons:

1. Sector is the first system that we are aware of for dis-
tributing large scientific data sets that is based upon a
peer-to-peer storage system. Previously, these types of
systems have been used mainly for distributing music
and video files.

2. Sector is designed to exploit the bandwidth available
in wide area, high performance networks, and to do
this in a way that is fair to other high volume flows and
friendly to traditional TCP flows [11]. Sector employs
UDT [28] to achieve this and is the first system that we
are aware of that uses alternatives to TCP to exploit the
bandwidth available in these new emerging networks.

3. Sector is designed to provide simple access to remote
and distributed data. No other infrastructure is required
than a fast network and a small Sector client applica-
tion. In contrast, installing and operating the infras-
tructure for a data grid can sometimes be challenging.



Sector Core

Chord

User

Edge Node

 

Figure 1. This diagram describes the Sector
architecture. Data is stored on Sector Core
nodes, which we assume are connected with
a wide area, high performance network. A
Sector client can access data transparently
from any of the nodes that hold it in the Sector
Core.

2 Requirements

Our goal was to design a system with the following re-
quirements in order to support the access, integration and
analysis of large scientific data sets, especially distributed
data sets.

1. The first requirement was that the data should be ac-
cessible by name without having to know its location.

2. The second requirement was that some or all of the
data should be able to be distributed over multiple
nodes connected with a high performance network.
With this architecture, the Sector software can then
transfer the data from the Sector node or nodes with
the smallest round trip times and the highest perfor-
mance network links.

3. The third requirement was to support the scalability of
the storage system by enabling additional Sector nodes
to be added easily to the system.

4. The final and fourth requirement was that the system
be simple and easy for client applications to use.

We assume that other essential requirements, such as se-
curity are managed outside of the Sector system.

3 Architecture

The Sector Core. The Sector architecture assumes that
the Sector Core nodes are high-end workstations that are
connected by high performance networks to each other. A

second assumption is that the nodes trust each other. If a
node requests to join the Sector Core, at least one of the
current nodes must add its IP address to the trust list. See
Figure 1.

A Sector client can talk to any of the Sector nodes. If
there are multiple core nodes that can provide the requested
service, Sector selects an optimal node for a given user re-
quest. Currently, the node selection is based on the round
trip time (RTT) between the user and each candidate node.
Sector plans to use more sophisticated algorithms in the fu-
ture.

A user request is processed as follows:

1. A user sends a request to a Sector edge node E0 for
data or a file X .

2. E0 starts a search inside the Sector core to locate X ,
and finds a set of Sector nodes E1 – En that contain
X .

3. E0 chooses an optimal node E′ from E1 to En and
tells the user the address of E′.

4. The user sends a request to E′ for X and sets up a
connection to transport the data or file. All access op-
erations for the data or file are transmitted via this con-
nection.

Group Messaging Protocol (GMP). We designed and im-
plemented a protocol called the Group Messaging Protocol
or GMP for messaging passing between Sector nodes. We
chose not use TCP because as the number of Sector nodes
increases, it becomes prohibitive to create a TCP connection
between every two Sector nodes. Also, if Sector created a
TCP connection on the fly as needed, there would be addi-
tional delays when responding to Sector client requests.

The GMP uses both UDP and TCP. Each GMP entity
creates a UDP socket and a listening TCP socket. For most
messages that are less than a threshold size (maximum UDP
payload size), the message will be sent via UDP, and GMP
manages the delivery reliability. If the message is so large
that it cannot be packed into a single UDP packet, a TCP
connection will be set up and the message delivered using
TCP.

Both the implementation of the peer-to-peer routing pro-
tocol and the implementation of Sector itself use GMP for
exchanging messages.

4 Chord

The routing protocol is derived from Chord [26]. The
descriptor of a file is put on the node whose ID is the small-
est among those nodes whose IDs are larger than or equal
to the file ID. If no such node exists, the file descriptor is
stored on the node with the smallest ID in the system.

2



0

4

3

2

17

6

5

F4, F6

F7

F1

 

Figure 2. This diagram illustrates the Chord
routing protocol for a simple example in
which the file ID and node ID each use 3 bi-
nary digits.

For example, if both the node ID and file ID use 3 bi-
nary digits, there are at most 8 nodes and 8 files that can be
managed by the system, as shown in Figure 2. In Figure 2,
a dark dot represents a real node. A file with ID 1 is put on
node 2, files with IDs 4 and 6 are put on nodes 6, and file
with ID 7 is put on node 0.

More details about Chord can be found in [26]. Note that
routing is an independent layer in the Sector system and that
other protocols may be used in the future. We chose to use
Chord in the first version of Sector because of its simplicity
and ease of implementation.

5 Sector

Sector provides two levels of data access service. The
first level is distributed file access by name. A file may have
multiple copies in Sector and the location information can
be obtained by the routing protocol (i.e., Chord). Once a
connection is set up between the Sector node that contains
a copy of the file and the user, the operation is defined by a
file access protocol.

In detail, Sector file access service works as follows.
Each Sector node maintains two indexes: the local file index
and the remote file index. The local file index records all the
file copies on the Sector node itself, whereas the remote file
index maintains those files whose location information is on
the node.

At the end of each interval of constant time, the local file
index is scanned for each entry, and Sector checks if the file
is correctly maintained in the remote file index of the proper
Sector node (defined by Chord, see Figure 1). Meanwhile,
the remote file index is scanned, and each entry is checked
to guarantee that this is the correct node to store the location
of the file and that the remote file does exist.

The periodical checking keeps updating these two in-
dexes. Once a request comes, the remote file index is
checked and the file location information is returned. Note
that there may be a transient error due to a node joining or
leaving the Sector system. Although such an error is in-
evitable, Sector keeps it transient: the errors will be fixed
during the next index checking and the user can submit the
request again if the first try fails.

The second level, which is not yet included in the current
Sector software release, is to allow locating and accessing
data by attributes or keys. Locating data by attributes fol-
lows the same process as locating a file by name, as de-
scribed above. However, new components are required to
provide data representation and simple SQL query support.

In addition, we will also introduce global indexes to pro-
vide broader searching service.

6 Implementation

Sector is implemented in C++ and includes Sector server
software and Sector client software. The Sector Server is an
application used for the Sector Core. A Sector node can
start, join and leave the Sector Core using the server side
software.

The client side software is actually an API that provides
Sector access.

The current implementation of Sector uses version 3 of
the high performance network protocol UDT [11], [12] for
data and file access. The design is modular and it is easy to
use other high performance protocols in future implemen-
tations. Version 3 of UDT is a high performance protocol
framework and several different high performance network
protocols may be deployed using it, including UDT itself,
RBUDP, Scalable TCP, High Speed TCP and others [13].

Sector is open source and will be distributed by Source
Forge in the near future.

Some screen shots may be seen in Figures 3 and 4.

7 Experimental Studies

During the past few months, we have used Sector to dis-
tribute the BESTDR4 catalog data from the Sloan Digital
Sky Survey (SDSS) [24]. This data set is about one TB in
size when compressed, or 1.7-1.8 TB when uncompressed.

To distribute this SDSS catalog data, Sector has been
installed on several nodes connected via 10GE networks

3



Figure 3. This is an image of the web site for distributing Sloan Digital Sky Survey data using Sector.

Figure 4. The Sector Code nodes currently consist of nodes in Chicago, Greenbelt, Tokyo, and Korea.
All these nodes are connected by 10G networks.

4



that are optically interconnected at the StarLight Facility in
Chicago [25]. In particular, Sector Core nodes have been in-
stalled in the following locations: Chicago, Illinois; Green-
belt, Maryland; Tokyo, Japan; and Daejeon, Korea. At each
of these locations, either the entire SDSS BESTDR4 catalog
data or portions of the catalog have been installed.

This SDSS catalog data is distributed via the web site
sdss.ncdm.uic.edu. From this web site, a user can download
a version of the Sector software that has been customized
to distribute the SDSS BESTDR4 catalog data by simply
including a list of the names of the files that constitute the
BESTDR4 data set. A user simply issues a Sector get with
this list of files and Sector will transport the data set to his
or her workstation.

Table 2 shows the time required to transport the SDSS
BESTDR4 data from Chicago to Greenbelt (18956 sec-
onds), Maryland, Daejeon, Korea (35716 seconds), and
Tokyo, Japan (55735 seconds). The time required by Sector
clients to download the SDSS data is logged by the Sec-
tor nodes serving the SDSS data and additional informa-
tion, including these logs, is available from the web site
sdss.ncdm.uic.edu. These timings do not include the times
required to verify the data. The files transferred are DBMS
server backup files.

We emphasize that although the current Sector Core
Nodes are connected with high performance networks, the
Sector Core Nodes contain commodity disks. Copying
data over local area networks using these disks proceeds
achieves a performance of about 400-500 Mbps. For addi-
tional information about the equipment used in the testbed,
see Table 1.

8 Related Work

Distributed file systems are described in [27], [1], [15];
parallel file systems are described in [6] and [3]; and peer-
to-peer file sharing systems are described in [22], [7] and
[18].

The Network File System (NFS) is a remote file ac-
cess protocol for remotely sharing files. The Andrew File
System (AFS) [15] and the Distributed File System (DFS)
[16] provide improved cache performance and coherence
for wide area applications. Frangipani [27] and xFS [1] are
serverless cluster file systems. Both are designed to provide
good performance and availability.

Parallel file systems, such as Vesta [6] and PVFS [3] pro-
vide parallel access and an API suitable for parallel comput-
ing, but are not designed for wide area applications.

In contrast to these systems listed above, Sector does not
provide a directory service; instead, all files are identified by
a globally unique name. Furthermore, Sector relies on high
performance networks and specialized high performance
network protocols to obtain high performance. Viewed this

way, Sector is not a distributed file system, but rather a spe-
cialized peer-to-peer storage system.

In addition to Chord [26], there are also other routing
protocols, such as Pastry [23], Tapestry [29], and CAN [20].
Pastry and Tapestry use a prefix based lookup mechanism,
and they also consider locality. CAN routes messages in
a k-dimension space. On the other hand, Chord uses a
distributed hash technique to distribute file IDs uniformly.
CAN and Chord make no effort to achieve network locality.
Instead, with the necessary information about other nodes,
files can be accessed from any node, despite its locality or
lack of locality. This provides good scalability, but may also
mean longer lookup delays.

There are several storage systems that have been devel-
oped based on these lookup mechanisms, including PAST
[22], OceanStore [18], and CFS [7]. Both PAST and
OceanStore examine the network topology to achieve lo-
cality. Replicas in OceanStore can also relocate over time
according to usage patterns. CFS uses Chord as a lookup
mechanism.

We do not have Globus running over the Sector nodes,
so we could not directly compare Sector to gridFTP [5]. On
the other hand, from prior experimental studies [11], we ex-
pect gridFTP to achieve approximately the same bandwidth.
The Globus replication infrastructure [5] provides an alter-
native mechanism for replicating large scientific data sets.
From a pure performance point of view, Sector provides no
advantage over Globus and Globus data replication mech-
anisms. On the other hand, the underlying usage model is
fundamentally different. Globus is a secure infrastructure
enabling collaborations to share computational and data re-
sources. Sector is a high performance distributed storage
and data system designed to run as an application that pro-
vides access to distributed files and data using a peer-to-peer
architecture and employing high performance network pro-
tocols. Sector employs a data web security model not a data
grid security model.

9 Summary and Conclusion

We have described a peer-to-peer distributed storage sys-
tem called Sector that is designed a) to store large data sets
over a set of distributed Sector Core nodes connected by
high performance networks, and b) to enable Sector clients
to access this data simply and easily.

Since Sector uses high performance network protocols,
such as UDT [11] designed to exploit the bandwidth avail-
able on wide area high performance networks without the
necessity of specialized installation or tuning, accessing
data using Sector can be over a hundred times faster than
using protocols such as TCP, as it is commonly deployed.

We have described some of our experiences distribut-
ing the one Terabyte Sloan Digital Sky Survey (SDSS)

5



node CPU Memory Disk Disk Read Disk Write NIC
Chicago Dual Opteron250 2.4GHz 4GB 1.5TB 4-Disk RAID 5 56MB/sec 50MB/sec Intel 10GE LR
Tokyo Dual Opteron250 2.4GHz 4GB 1.5 TB 4-Disk RAID 0 190MB/sec 140MB/sec Intel 10GE LR

Daejeon Dual Opteron250 2.4GHz 4GB 2.0 TB 4-Disk RAID 0 190MB/sec 180MB/sec Intel 10GE LR
Greenbelt Dual dual-core Opteron 1.8GHz 4GB 2.0 TB 6-Disk RAID 5 160MB/sec 90MB/sec Intel 10GE SR

Table 1. This table shows the hardware configuration of path of teraflow testbed nodes used in the
experiments.

Source Destination Total Time Bandwidth - Mean Max Min Stdev
Chicago Greenbelt 18956 344 378 0 54.6
Chicago Tokyo 55735 163 203 0 52.8
Chicago Daejeon 35716 229 244 135 13.7
Tokyo Tokyo NA 228 304 174 36.2

Table 2. Some experimental results of distributing the SDSS BESTDR4 data set using Sector over
nodes connected with 10G networks. The data set was divided into 64 files and the mean is the mean
bandwidth obtained averaged over these 64 files. The maximum and minimum are the maximum and
minimum over these 64 files, as is the standard deviation. The mean, max, and min are all measured
in Mbps. Total time is measured in seconds. Notice that Sector transfers data over the wide area
network between Chicago and Tokyo at about 70% of the speed that ftp transfers the data over the
local area network connecting the two Sector nodes in Tokyo. Of course, with higher performance
disks, these transfer speeds would be higher.

BESTDR4 catalog data using Sector. In particular, we are
currently distributing this data using Sector Core nodes in
Chicago, Greenbelt, Tokyo, and Daejeon. We have de-
scribed some measurements transporting data to each of
these sites using Sector. In particular, we note that using
Sector data can be moved to a node in Tokyo at over 70% of
the speed that it can be transfered to that node over a local
area network from another node in the same rack.

Since the Sector software can be installed at the applica-
tion layer and does not require any special security infras-
tructure, it is substantially easier for many users to install
than a typical data grid application or a solution that re-
quires substantial tuning of the TCP stack to achieve high
performance.

To summarize, we have demonstrated by the experimen-
tal studies in this paper that by using systems such as Sector,
we can effectively and practically distribute large scientific
data sets using wide area high performance networks.

References

[1] Thomas E. Anderson, Michael D. Dahlin, Jeanna M.
Neefe, David A. Patterson, Drew S. Roselli, and Ran-
dolph Y. Wang. Serverless network file systems. In
Proceedings of the 15th Symposium on Operating

Systems Principles, pages 109–126, Copper Mountain
Resort, Colorado, December 1995. ACM.

[2] Beck, M., Moore, T., and Plank, J.S. An end-to-end
approach to globally scalable network storage. Proc.
of ACM SIGCOMM ’02, Pittsburgh, August 2002.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R.
Thakur, “PVFS: A Parallel File System For Linux
Clusters”, Proceedings of the 4th Annual Linux Show-
case and Conference, Atlanta, GA, October 2000, pp.
317-327.

[4] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda,
B. Moe, Wide Area Data Replication for Scientific
Collaborations, Proceedings of 6th IEEE/ACM Inter-
national Workshop on Grid Computing (Grid2005),
November 2005.

[5] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury,
and S. Tuecke, The Data Grid: Towards an architec-
ture for the distributed management and analysis of
large scientific datasets, Network Storage Symposium
(NetStore ’99), October 1999.

[6] Corbett, P. F. and Feitelson, D. G. 1996. The Vesta
parallel file system. ACM Transactions on Computer
Systems 14, 3 (August), 225–264.

6



[7] Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Wide-area cooperative
storage with CFS. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP
’01).

[8] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Se-
curity Architecture for Computational Grids. Proc. 5th
ACM Conference on Computer and Communications
Security Conference, pp. 83-92, 1998.

[9] Robert Grossman, and Marco Mazzucco, DataSpace
- A Web Infrastructure for the Exploratory Analysis
and Mining of Data, IEEE Computing in Science and
Engineering, July/August, 2002, pages 44-51.

[10] Ian Foster and Robert L. Grossman, Data Integration
in a Bandwidth Rich World, Communications ACM,
Volume 46, Issue 11, November, 2003, pages 50-57.

[11] Robert L. Grossman, Yunhong Gu, Xinwei Hong,
Antony Antony, Johan Blom, Freek Dijkstra, and Cees
de Laat, Teraflows over Gigabit WANs with UDT,
Journal of Future Computer Systems, Elsevier Press,
Volume 21, Number 4, 2005, pages 501-513.

[12] Yunhong Gu, Xinwei Hong, and Robert Grossman,
Experiences in Design and Implementation of a High
Performance Transport Protocol, ACM/IEEE Interna-
tional Conference for High Performance Computing
and Communications (SC ’04), page 22.

[13] Yunhong Gu and Robert Grossman, Supporting Con-
figurable Congestion Control in Data Transport Ser-
vices, ACM/IEEE International Conference for High
Performance Computing and Communications (SC
’05).

[14] Yunhong Gu and Robert L. Grossman, The Design
and Implementation of the Sector Peer-to-Peer Stor-
age System, in preparation.

[15] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems, 6(1):51–
81, February 1988.

[16] Kazar, M. L., Leverett, B. W., Anderson, O. T., Apos-
tolides, V., Bottos, B. A., Chutani, S., Everhart, C. F.,
Mason, W. A., Tu, S. and Zayas, E. R., ”DEcorum File
System Architectural Overview”, Proceedings of the
Summer 1990 USENIX Conference, Anaheim, CA,
June 11-15 1990, 151- 164.

[17] C. Kommareddy, N. Shankar, and B. Bhattacharjee.
”Finding Close Friends on the Internet”, IEEE ICNP,
November 2001.

[18] Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton
P, Geels D, Gummadi R, Rhea S, Weatherspoon H,
Weimer W, Wells C, Zhao B. 2000. OceanStore: An
architecture for globalscale persistent store. In: Pro-
ceedings of ASPLOS’2000; 2000; November; Cam-
bridge, MA; Pages 190-201.

[19] Particle Physics Data Grid, retrieved from
www.ppdg.org on June 10, 2006.

[20] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Shenker. A scalable content-
addressable network. In Proc. ACM SIGCOMM 2001,
August 2001.

[21] P. Rodriguez, A. Kirpal, and E. W. Biersack. Parallel-
access for mirror sites in the Internet. In Proc. of IEEE
Infocom 2000, volume 2, pages 864–873, Tel Aviv,
Israel, Mar. 2000.

[22] Rowstron A, Druschel P. 2001. Storage manage-
ment and caching in PAST, a largescale, persistent
peer-to-peer storage utility. In: Proceedings of ACM
SOSP’01; 2001; October; Banff, Canada; Pages 188-
201.

[23] Rowstron A, Druschel P. 2001. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In: Proceedings of IFIP/ACM
Middleware; 2001; Heidelberg, Germany.

[24] Adelman-McCarthy et al. 2006. The Fourth Data Re-
lease of the Sloan Digital Sky Survey, In: The As-
trophysical Journal Supplement, vol. 162, issue 1, pp.
38-47.

[25] StarLight, retrieved from www.startap.net on June 4,
2006.

[26] Stoica I, Morris R, Karger D, Kaashoek M. F, Bal-
akrishnan H. 2001. Chord: A scalable peer-to-peer
lookup service for Internet applications. In: Proceed-
ings of ACM SIGCOMM’01; August; San Diego, CA;
Pages 149-160.

[27] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani;
A Scalable Distributed File System. In Proceedings
of the 16th ACM Symposium on Operating Systems
Principles, Oct. 1997.

[28] UDP-Based Data Transport Protocol, retrieved from
udt.sf.net on June 10, 2006.

[29] Zhao B. Y., Kubiatowicz J. D., Joseph A. D.
2001. Tapestry: An infrastructure for fault-resilient
wide-area location and routing. Technical Report
UCB//CSD-01-1141, U.C. Berkely; 2001; April.

7


