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Abstract

We have developed an algorithm called the Universal 
Chemical Key (UCK) algorithm that constructs a unique 

key for a molecular structure. The molecular structures 

are represented as undirected labeled graphs with the 
atoms representing the vertices of the graph and the 

bonds representing the edges. The algorithm was tested 
on 236,917 compounds obtained from the National 

Cancer Institute (NCI) database of chemical compounds. 

In this paper we present the algorithm, some examples 
and the experimental results on the NCI database. On the 

NCI database, the UCK algorithm provided distinct 

unique keys for chemicals with different molecular 
structures. 

1. Introduction 

Chemical compounds usually have several common 

names. Although unique identifiers attached to chemical 

compounds would be useful for a variety of purposes, 

there is no consensus about how to do this.  Currently 

most nomenclatures for chemical compounds either do 

not provide unique keys or the unique keys provided are 

based upon convention, such as when the compound was 

entered into a database. For this reason, determining 

whether a compound was entered into a database twice or 

comparing compounds across databases is difficult. 

An illustration of the structural formula of such a 

compound, Testosterone, is depicted as an example in 

Figure 1. This molecule as entered in the National Cancer 

Institute (NCI) database of chemical compounds has 54 

names associated with it and a unique id of 9700, which is 

also different from its Chemical Abstract Services (CAS) 

id of 58-22-0. Because of examples like this, it is very 

important to construct a unique key that is derived from 

the structural features of the compound. Using such a key, 

properties of a chemical contained in a database in one 

location could be combined with properties of the same 

chemical compound contained in a database in another 

location automatically. With the increasing use of 

distributed infrastructures for computing, such as data 

grids and web service-based platforms, having universal 

chemical keys that can be used to combine distributed 

data about chemical compounds is of growing 

importance.  Indeed, we have used the UCK algorithm 

described here to build distributed data web applications 

for docking chemical compounds in proteins from the 

Protein Data Bank (PDB). 

Our algorithm for computing what we call a 

Universal Chemical Key or UCK is based upon 

abstracting the chemical compound as a labeled graph, 

with atoms represented by nodes and bonds represented 

by edges. The nodes are labeled with the symbols 

corresponding to the atoms they represent.  Note that two 

labeled graphs representing molecular structures are the 

same or isomorphic if they are labeled using the same 

labels and can be mapped onto each other such that the 

labels of nodes or atoms and edges or bonds are 

conserved.

We introduce an algorithm, which given a labeled 

graph representing a chemical compound, produces a long 

string, which is the UCK.  This string has the properties: 



i) Chemical compounds associated with the same labeled 

graph are identical and produce the same UCK.  ii) The 

UCKs of different labeled graphs are different in practice 

according to our experiments. Since the problem of 

distinguishing labeled graphs in general is NP-hard, it is 

not reasonable to expect a fast algorithm to do this 100% 

of the time.  On the other hand, we show that in practice, 

on large collections of chemical compounds such as the 

NCI database, our UCK algorithm does have this 

property.  Since the UCK strings can be quite long, we 

associate a shorter string using a standard hashing 

algorithm called MD5 [1].  Although the MD5 hash is not 

guaranteed to be unique, in practice it almost always is 

unique. 
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Figure 1. Structural formula of Testosterone, C19H28O2. 

Testosterone has the NSC id of 9700 and the CAS id 58-22-0. 

Some of the other names Testosterone goes by are 17-

hydroxyandrost-4-en-3-one, Androlin, Cristerona T, and 

Homosteron.

In this paper, we present some background of the 

problem for finding unique keys or nomenclatures for 

chemical compounds in the Related Work section. Our 

algorithm is presented in the Computational Methods and 

Algorithm section. We tested the algorithm on the 

National Cancer Institute (NCI) database of chemical 

compounds, and the results are detailed in the Results 

section with some relevant examples. In closing we give a 

brief summary of this study and discuss some future 

work. 

2. Related work 

Numbering and ordering of atoms and groups of 

atoms of molecular structures have always been done by 

organic chemists, which subsequently led to several 

different systems of naming compounds. The 

International Union of Pure and Applied Chemistry 

(IUPAC) nomenclature rules [2] are the most widely 

used. However, these rules only work effectively for very 

small molecules and generally are inconsistent, hard to 

understand, and easily cause mistakes [3, 4, 5]. The idea 

of using graph theory in solving the above problem was 

put forward some twenty years ago [6, 7], but never really 

caught the attention of chemists. 

Recently, the International Union of Pure and 

Applied Chemistry (IUPAC) established a project to 

develop unique keys for chemical compounds. This is an 

ongoing project, which was announced [8] a couple of 

years ago. The approach that the scientists are using is in 

part based on graph theory. However, the details are yet 

to be published. The documentation and algorithm will be 

published at the end of the project. Their aim is to 

generate a unique key from a graphical input of structural 

information of known and as yet unknown compounds. 

The keys, known as IUPAC Chemical Identifiers are 

alphanumeric text strings that can lead back to the 

structure of the compound and that can be digitized to be 

used in printed and electronic information. 

In calculating a unique identifier for a chemical 

compound, one can represent the molecule as a graph as 

discussed in the Introduction. Therefore, two molecules 

are the same if the graph representations are isomorphic. 

Several algorithms [9, 10, 11] have been developed to 

check whether two graphs are isomorphic. However, 

direct comparison of molecular structures will not be 

adequate for this study because the aim is to develop an 

algorithm that is capable of generating unique ids for 

chemical compounds whether they are presently available 

or not. The chemical id problem can be solved if one can 

uniquely order the nodes in a labeled graph irrespective of 

their original order. These types of algorithms are in fact 

very useful in the graph isomorphism problem. Tinhofer 

and coworkers [12] developed an algorithm to generate 

canonical numbers for a labeled graph. They do this by 

considering all adjacent matrices of the graph that belong 

to the isomorphism class. Each matrix is read row by row 

as a binary number and the matrix with the smallest 

number is selected. The graph with this numbering is 

considered to be canonically numbered. Also, Brendan D. 

McKay [13, 14] has developed an algorithm to generate a 

canonical labeling map of a labeled graph. This algorithm 

has been implemented in the program called “nauty.” 

3. Computational methods and algorithms 

3.1 Overview

We begin with an overview of the algorithm.  The 

first step in generating the UCK is to represent different 

types of covalent bonds, i.e., single, double or triple by 

just a single bond between atoms of the molecule, so that 

we can focus only on the connectivity and also because 

there is no unique way to determine double and triple 

bonds. We also disregard the overall charge on the 

molecule.  If desired, variants of the algorithm below 

could incorporate this information as additional labels. 



The molecule is now considered as an undirected labeled 

graph G = (V, E) consisting of a finite set of vertices V 

and a finite set of edges E. The set of atoms in the 

molecule is the vertex set, V and the set of covalent bonds 

between the atoms is the edge set, E. Each edge has a 

unity weight.  At this stage, the labels in the graph G 

represent atoms and do not reflect any of the local 

structure around the atom. 

The next step in the UCK algorithm is to replace the 

labels with new labels that capture some of the local 

connectivity and chemical environment around each 

atom.  Atoms with similar connectivity will end up 

having similar labels. In the next step of the UCK 

algorithm, the lengths of the shortest paths between each 

pair of vertices of the vertex set V of the graph G are 

generated. The path labels are produced by concatenating 

the source label, the path length, and the destination label. 

At every stage of labeling we follow a rule based 

lexicographical ordering so that the whole procedure is 

invariant to the changes in ordering of the vertex set V. A 

lexicographical ordering of the labels of all pair of 

shortest path sets is done. The labels are concatenated to 

form a string and prefixed by the molecular formula of 

the molecule. The string thus obtained uniquely 

represents the molecule. 
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Figure 2. An example showing the procedure to generate a 

unique string for a given molecule.

Here is part of an example. A more detailed 

description of the algorithm follows. A schematic 

representation of a molecule that may or may not exist is 

shown in Figure 2 with single, double and triple bonds 

and shows an overview of the algorithm. We represent the 

double and triple bonds as single bonds, so that it can be 

represented as a graph G = (V, E) where the vertex set V 

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the edge set E = {(1,2), 

(2,3), (3,4), (4,5), (5,6), (2,7), (3,8), (4,9), (6,10)}.  The 

list <O, C, C, C, C, C, H, H, H, H> is the label list for 

elements corresponding to V.  Observe that though the 

connectivity of the second vertex is different from that of 

the third to the sixth they all have the same labels. 

3.2 Algorithm 

3.2.1 Initial setup 

The first step is to represent different types of 

covalent bonds as single bonds. Next we consider the 

molecule as an undirected graph G = (V, E) consisting of 

a finite set of vertices V and a set of edges E. The set of 

atoms in the molecule is the vertex set, V and the set of 

covalent bonds between the atoms is the edge set, E. The 

weight function is defined as w: E  {1}. 

3.2.2 Labeling of the vertices 

For a depth d, we define (d) inductively from (d-1).
(d) re-labels each node in G.

Step 0:  

Define (0) (b) = label (b), where b is a node in Graph 

G and (d) is the label map. 

Step 1:  

Fix node ‘a’ and let b1, … , bk be its children. 

Step 2:  

Compute (d-1) (b1), … , (d-1) (bk)

Step 3:  

Remove all occurrences of a from (d-1) (b1), … , (d-1)

(bk), lexicographically order them to produce the string 
(d-1) (bi1) … (d-1) (bik).

Step 4:  

Define (d) (a) = label (a) (d-1) (bi1) … (d-1) (bik)

3.2.3 Labeling of shortest paths 

Re-label G with labels (2) (we use d = 2 in this 

work). Call this G’. Fix a V of G’ for each b V of G’. 

Define µ(b) = The concatenated string <label (a) n label 

(b) >, where n = length of shortest path from a to b.

3.2.4 Generate unique key µ(G) for graph G

µ(G) = Chemical formula-Lexicographically Ordered 

string < µ(b) | a V, b V of G’> µ(G) is the unique 

key. 



3.3 Example 

Let us consider benzoic acid (C7H6O2).  
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Figure 3. Structure of benzoic acid (NCI number = 149). 

The new label for the vertices is shown in Table 1 below. 

Table 1. Showing new labels generated.

Vertex Number New Label 
(2)

1 OCCOH 

2 CCCCOOH 

3 OCCO 

4 CCCHCCHCOO 

5 CCCCCCHH 

6 CCCHCCHH 

7 CCCHCCHH 

8 CCCHCCHH 

9 CCCCCCHH 

10 HOC 

11 HCCC 

12 HCCC 

13 HCCC 

14 HCCC 

15 HCCC 

The unique string (G) is shown below: 

C7H6O2-CCCCCCHH0CCCCCCHHCCCCCCHH0CCCCCCHHCCC

CCCHH1CCCHCCHCOOCCCCCCHH1CCCHCCHCOOCCCCCCHH

1CCCHCCHHCCCCCCHH1CCCHCCHHCCCCCCHH1HCCCCCCC

CCHH1HCCCCCCCCCHH2CCCCCCHHCCCCCCHH2CCCCCCHH

CCCCCCHH2CCCCOOHCCCCCCHH2CCCCOOHCCCCCCHH2CC

CHCCHHCCCCCCHH2CCCHCCHHCCCCCCHH2HCCCCCCCCCH

H2HCCCCCCCCCHH3CCCHCCHHCCCCCCHH3CCCHCCHHCCC

CCCHH3HCCCCCCCCCHH3HCCCCCCCCCHH3HCCCCCCCCCH

H3HCCCCCCCCCHH3OCCOCCCCCCHH3OCCOCCCCCCHH3OC

COHCCCCCCHH3OCCOHCCCCCCHH4HCCCCCCCCCHH4HCCC

CCCCCCHH4HOCCCCCCCHH4HOCCCCCOOH0CCCCOOHCCCC

OOH1CCCHCCHCOOCCCCOOH1OCCOCCCCOOH1OCCOHCCCC

OOH2CCCCCCHHCCCCOOH2CCCCCCHHCCCCOOH2HOCCCCC

OOH3CCCHCCHHCCCCOOH3CCCHCCHHCCCCOOH3HCCCCCC

COOH3HCCCCCCCOOH4CCCHCCHHCCCCOOH4HCCCCCCCOO

H4HCCCCCCCOOH5HCCCCCCHCCHCOO0CCCHCCHCOOCCCH

CCHCOO1CCCCCCHHCCCHCCHCOO1CCCCCCHHCCCHCCHCO

O1CCCCOOHCCCHCCHCOO2CCCHCCHHCCCHCCHCOO2CCCH

CCHHCCCHCCHCOO2HCCCCCCHCCHCOO2HCCCCCCHCCHCO

O2OCCOCCCHCCHCOO2OCCOHCCCHCCHCOO3CCCHCCHHCC

CHCCHCOO3HCCCCCCHCCHCOO3HCCCCCCHCCHCOO3HOCC

CCHCCHCOO4HCCCCCCHCCHH0CCCHCCHHCCCHCCHH0CCC

HCCHHCCCHCCHH0CCCHCCHHCCCHCCHH1CCCCCCHHCCCH

CCHH1CCCCCCHHCCCHCCHH1CCCHCCHHCCCHCCHH1CCCH

CCHHCCCHCCHH1CCCHCCHHCCCHCCHH1CCCHCCHHCCCHC

CHH1HCCCCCCHCCHH1HCCCCCCHCCHH1HCCCCCCHCCHH2

CCCCCCHHCCCHCCHH2CCCCCCHHCCCHCCHH2CCCHCCHCO

OCCCHCCHH2CCCHCCHCOOCCCHCCHH2CCCHCCHHCCCHCC

HH2CCCHCCHHCCCHCCHH2HCCCCCCHCCHH2HCCCCCCHCC

HH2HCCCCCCHCCHH2HCCCCCCHCCHH2HCCCCCCHCCHH2H

CCCCCCHCCHH3CCCCCCHHCCCHCCHH3CCCCCCHHCCCHCC

HH3CCCCOOHCCCHCCHH3CCCCOOHCCCHCCHH3CCCHCCHC

OOCCCHCCHH3HCCCCCCHCCHH3HCCCCCCHCCHH3HCCCCC

CHCCHH3HCCCCCCHCCHH4CCCCOOHCCCHCCHH4HCCCCCC

HCCHH4HCCCCCCHCCHH4OCCOCCCHCCHH4OCCOCCCHCCH

H4OCCOHCCCHCCHH4OCCOHCCCHCCHH5HOCCCCHCCHH5H

OCCCCHCCHH5OCCOCCCHCCHH5OCCOHCCCHCCHH6HOCHC

CC0HCCCHCCC0HCCCHCCC0HCCCHCCC0HCCCHCCC0HCCCH

CCC1CCCCCCHHHCCC1CCCCCCHHHCCC1CCCHCCHHHCCC1

CCCHCCHHHCCC1CCCHCCHHHCCC2CCCCCCHHHCCC2CCCC

CCHHHCCC2CCCHCCHCOOHCCC2CCCHCCHCOOHCCC2CCCH

CCHHHCCC2CCCHCCHHHCCC2CCCHCCHHHCCC2CCCHCCHH

HCCC2CCCHCCHHHCCC2CCCHCCHHHCCC3CCCCCCHHHCCC

3CCCCCCHHHCCC3CCCCCCHHHCCC3CCCCCCHHHCCC3CCCC

OOHHCCC3CCCCOOHHCCC3CCCHCCHCOOHCCC3CCCHCCHC

OOHCCC3CCCHCCHHHCCC3CCCHCCHHHCCC3CCCHCCHHHC

CC3CCCHCCHHHCCC3HCCCHCCC3HCCCHCCC3HCCCHCCC3H

CCCHCCC3HCCCHCCC3HCCCHCCC3HCCCHCCC3HCCCHCCC4

CCCCCCHHHCCC4CCCCCCHHHCCC4CCCCOOHHCCC4CCCCO

OHHCCC4CCCHCCHCOOHCCC4CCCHCCHHHCCC4CCCHCCHH

HCCC4HCCCHCCC4HCCCHCCC4HCCCHCCC4HCCCHCCC4HCC

CHCCC4HCCCHCCC4HCCCHCCC4HCCCHCCC4OCCOHCCC4OC

COHCCC4OCCOHHCCC4OCCOHHCCC5CCCCOOHHCCC5HCCC

HCCC5HCCCHCCC5HCCCHCCC5HCCCHCCC5HOCHCCC5HOC

HCCC5OCCOHCCC5OCCOHCCC5OCCOHHCCC5OCCOHHCCC6

HOCHCCC6HOCHCCC6OCCOHCCC6OCCOHHCCC7HOCHOC0H

OCHOC1OCCOHHOC2CCCCOOHHOC3CCCHCCHCOOHOC3OCC

OHOC4CCCCCCHHHOC4CCCCCCHHHOC5CCCHCCHHHOC5CC

CHCCHHHOC5HCCCHOC5HCCCHOC6CCCHCCHHHOC6HCCCH

OC6HCCCHOC7HCCCOCCO0OCCOOCCO1CCCCOOHOCCO2CC

CHCCHCOOOCCO2OCCOHOCCO3CCCCCCHHOCCO3CCCCCCH

HOCCO3HOCOCCO4CCCHCCHHOCCO4CCCHCCHHOCCO4HCC

COCCO4HCCCOCCO5CCCHCCHHOCCO5HCCCOCCO5HCCCOC

CO6HCCCOCCOH0OCCOHOCCOH1CCCCOOHOCCOH1HOCOCC

OH2CCCHCCHCOOOCCOH2OCCOOCCOH3CCCCCCHHOCCOH3

CCCCCCHHOCCOH4CCCHCCHHOCCOH4CCCHCCHHOCCOH4H

CCCOCCOH4HCCCOCCOH5CCCHCCHHOCCOH5HCCCOCCOH5

HCCCOCCOH6HCCC



As we can see, the length of the generated string is 

very large, so we used the md5 algorithm to generate a 

hex digest for the string. The hex digest is 

39BF9B334B172E4E71E76B93C830B47E. From this 

point on, we will only use hex digest of md5 to represent 

the unique string. 

4. Results

We implemented the algorithm in the C 

programming language and tested it on 236,917 chemical 

compounds in the NCI database of chemical compounds.  

The input was a trimmed version of a PDB file that 

contains the atomic symbols and their spatial coordinates. 

We calculated the bond information and initialized it. We 

represented the graph in the form of an adjacency matrix 

and ran our UCK algorithm. The output was then piped to 

the md5 algorithm to generate the UCK hex digest. 

We generated UCK strings and the UCK md5 hex 

digest for 236,917 data sets consisting of a variety of drug 

molecules, including, in many cases, variants of the same 

molecule. The results are summarized in Table 2. By 

variants of the same molecule we mean data sets (which 

represent chemical compounds) that differ in the ordering 

of the atoms and/or their spatial orientation. The NCI 

database has many molecules whose structures are very 

similar but are different molecules. There are also 

molecules that have the same molecular formula but 

different structural formulas. 

Table 2. Summary of number of compounds studied. 

Description Number Remarks 

Total number of 

chemical 

compounds. 

236,917 Includes some 

compounds with 

duplicate entries. 

Number of 

chemical 

compound with 

single entry. 

203,384 All gave unique 

UCK.

Number of 

chemical 

compound with 

two or more 

entries. 

33,533 The UCK 

algorithm gave 

unique labels to 

distinct 

compounds.  The 

UCK algorithm 

gave the same 

label to the same 

compound 

occurring in 

multiple entries. 

Our algorithm produces excellent results, generating 

the same key for variants of the same molecule and 

different keys for different compounds. The algorithm is 

invariant to changes in input ordering of atoms and rigid 

transformations. We were able to recognize molecules 

that have more than one entry in the database with 

different database entries. For example, consider two 

molecules with NCI numbers 30783 and 206631 (Figure 

4). Though they have different NCI numbers they are the 

same molecule. A snapshot of the NCI database is given 

below, and also the hex digest generated by our algorithm 

(Table 3).  The two data sets have different ordering of 

atoms and slightly different spatial orientation. Also 

shown in Table 3 are the hex digest for two molecules 

with NCI numbers 91771 and 97338 that are the same but 

different in their respective conformations. 

30783

206631

N
+

O N

OCH
3

H

H

H

H

H

N
+

O N

OCH
3

H

H

H

H

H

Figure 4. Structure of 1-methyl-2-(trimethyl- 5-aznyl)ethyl 

carbamate with different  NSC numbers.

Table 3. Snapshot of NCI database and the hex digest (last 

column) generated by our algorithm.

NSC

Number 

Formula md5 hex digest generation 

of UCK 

30783 C7H17N2O2 02994BC7A283073ED9C

1730E2F37EFCD 

206631 C7H17N2O2 02994BC7A283073ED9C

1730E2F37EFCD 

91771 C38H42N2O6 5C0F9A8F0ECC0BAF32

CBCA62DA571F42 

97338 C38H42N2O6 5C0F9A8F0ECC0BAF32

CBCA62DA571F42 



The algorithm is sensitive to changes in connectivity 

even at the remotest portions of the molecule, which 

makes it very effective in detecting different chemical 

compounds that are very similar. Figure 5 shows two 

pairs of compounds that are quite similar. Table 4 gives 

the results of our algorithm and illustrates the efficiency 

of the algorithm for molecules with small and difficult to 

detect changes in structures. We can observe that their 

UCK keys are different.  

22433 89274

SO O

O
H

O
H

SO O

O
H

O
H

9587 9834

Figure 5. Structures of dibenzo[a,h]anthracene (22433) and 

benzo[b]chrysene (89274), 4-hydroxy-1-naphthalenesulfonic 

acid (9587) and 5-hydroxy-1-naphthalenesulfonic acid (9834). 

Table 4. Snapshot of NCI database and the hex digest (last 

column) generated by our algorithm for molecules with changes 

at remote parts of the molecule. 

NSC

Number 

Formula md5 hex digest generation 

of UCK 

22433 C22H14 A15F6359F7AC44C1A90C0

F90598664B4 

89274 C22H14 7A4A4AF922300C12704238

10B748FAF5 

9587 C10H8O4S 6BEAF3C856A2C1318F306

DDB0E7F888A 

9834 C10H8O4S 64373D3DB8329F56B6AFA

E59F07AAFC3 

For the largest compound (579 atoms) in the database 

it took about 5 seconds to generate the unique key. The 

results for generating unique keys for the largest 

compound and the 236,917 compounds studied are 

presented in Tables 5 and 6 respectively. The tests were 

carried out on a Dell machine with Dual Xeon 2.4 GHz 

processors with hyper threading, 2 gigabyte of RAM, and 

approximately 236 gigabyte of disk space on RAID-5 and 

running Red Hat Linux 8.0 operating system. 

Table 5. Properties and execution time of the large molecule 

studied.

Largest Molecule 

NCI Number 57300 

# Atoms 579 

Formula C166H328N2O83

md5 hex 

digest 

generation of 

UCK

CE6892FDEBE05614AAC08560A5D

4AE8B 

Time taken 

for UCK 

generation 

5.204 seconds 

Total length 

of the key 

(not md5) 

5278576 characters 

Table 6. Total time required to process the entire data set.

# Compounds Time taken 

(approx.) 

Remarks 

236,917 
18770.16 sec 

(5.214 hrs) 

With other 

processes taking 

up to 98.4% CPU 

and using 'nice'. 

236,917 
12478.42 sec 

(3.466 hrs) 

With just this job 

running. 

   

5. Summary and Conclusions 

We have developed an algorithm called the UCK 

algorithm that generates unique keys for a wide variety of 

chemical compounds. The UCK algorithm views 

molecular structures as undirected labeled graphs. The 

atoms are represented as the vertices and the edges as the 

bonds. The algorithm was experimentally tested on 

236,917 compounds from the NCI database, and 

generated unique keys for all the uniquely identified 

structures.    We call these keys Universal Chemical Keys 

or UCKs. We have used the UCKs to build distributed 

web-service based applications involving protein docking 



with data pulled from multiple distributed databases.  

Without a unique key such as the UCK, the application 

would have no way of knowing whether two distributed 

proteins or chemicals were the same or not.  

The UCK algorithm depends only upon the structure 

of the labeled graph.    Distinct labeled graphs give rise to 

distinct UCKs. On the other hand, two different labeled 

graphs could, in theory, give rise to the same UCK.  This 

is a calculated trade-off.  Distinguishing arbitrary labeled 

graphs is NP-hard and hence a fast deterministic 

algorithm cannot be expected.  On the other hand, 

chemical compounds give rise to a restricted class of 

labeled graphs - it is likely that our algorithm can be 

proven to be unique on various restricted classes of 

chemical compounds. We plan to investigate these types 

of results and to verify experimentally the properties of 

our UCK algorithm on additional databases of chemical 

compounds. 

In particular, in this study the UCK algorithm uses a 

depth d = 2, for labeling the vertices. Using different 

depths and dynamically assigning the depth depending 

upon the compound gives rise to UCKs that are more 

expensive to compute but stronger.  We plan on 

investigating these trade-offs in future work. 

To summarize, the UCK algorithm is a fast and 

effective algorithm that provides intrinsic and unique keys 

for a wide class of commonly occurring chemical 

compounds. 
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