
Experimental Studies of the Universal Chemical Key (UCK) Algorithm on the NCI

Database of Chemical Compounds

Robert Grossman
†

Laboratory for Advanced Computing

University of Illinois at Chicago

Chicago, IL 60607

grossman@uic.edu

Pavan Kasturi

Laboratory for Advanced Computing

University of Illinois at Chicago

Chicago, IL 60607

pavan@lac.uic.edu

Donald Hamelberg

Laboratory for Advanced Computing

University of Illinois at Chicago

Chicago, IL 60607

don@lac.uic.edu

Bing Liu

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

liub@cs.uic.edu

Abstract

We have developed an algorithm called the Universal
Chemical Key (UCK) algorithm that constructs a unique

key for a molecular structure. The molecular structures

are represented as undirected labeled graphs with the
atoms representing the vertices of the graph and the

bonds representing the edges. The algorithm was tested
on 236,917 compounds obtained from the National

Cancer Institute (NCI) database of chemical compounds.

In this paper we present the algorithm, some examples
and the experimental results on the NCI database. On the

NCI database, the UCK algorithm provided distinct

unique keys for chemicals with different molecular
structures.

1. Introduction

Chemical compounds usually have several common

names. Although unique identifiers attached to chemical

compounds would be useful for a variety of purposes,

there is no consensus about how to do this. Currently

most nomenclatures for chemical compounds either do

not provide unique keys or the unique keys provided are

based upon convention, such as when the compound was

entered into a database. For this reason, determining

whether a compound was entered into a database twice or

comparing compounds across databases is difficult.

An illustration of the structural formula of such a

compound, Testosterone, is depicted as an example in

Figure 1. This molecule as entered in the National Cancer

Institute (NCI) database of chemical compounds has 54

names associated with it and a unique id of 9700, which is

also different from its Chemical Abstract Services (CAS)

id of 58-22-0. Because of examples like this, it is very

important to construct a unique key that is derived from

the structural features of the compound. Using such a key,

properties of a chemical contained in a database in one

location could be combined with properties of the same

chemical compound contained in a database in another

location automatically. With the increasing use of

distributed infrastructures for computing, such as data

grids and web service-based platforms, having universal

chemical keys that can be used to combine distributed

data about chemical compounds is of growing

importance. Indeed, we have used the UCK algorithm

described here to build distributed data web applications

for docking chemical compounds in proteins from the

Protein Data Bank (PDB).

Our algorithm for computing what we call a

Universal Chemical Key or UCK is based upon

abstracting the chemical compound as a labeled graph,

with atoms represented by nodes and bonds represented

by edges. The nodes are labeled with the symbols

corresponding to the atoms they represent. Note that two

labeled graphs representing molecular structures are the

same or isomorphic if they are labeled using the same

labels and can be mapped onto each other such that the

labels of nodes or atoms and edges or bonds are

conserved.

We introduce an algorithm, which given a labeled

graph representing a chemical compound, produces a long

string, which is the UCK. This string has the properties:

i) Chemical compounds associated with the same labeled

graph are identical and produce the same UCK. ii) The

UCKs of different labeled graphs are different in practice

according to our experiments. Since the problem of

distinguishing labeled graphs in general is NP-hard, it is

not reasonable to expect a fast algorithm to do this 100%

of the time. On the other hand, we show that in practice,

on large collections of chemical compounds such as the

NCI database, our UCK algorithm does have this

property. Since the UCK strings can be quite long, we

associate a shorter string using a standard hashing

algorithm called MD5 [1]. Although the MD5 hash is not

guaranteed to be unique, in practice it almost always is

unique.

CH3

CH3

OH

O

Figure 1. Structural formula of Testosterone, C19H28O2.

Testosterone has the NSC id of 9700 and the CAS id 58-22-0.

Some of the other names Testosterone goes by are 17-

hydroxyandrost-4-en-3-one, Androlin, Cristerona T, and

Homosteron.

In this paper, we present some background of the

problem for finding unique keys or nomenclatures for

chemical compounds in the Related Work section. Our

algorithm is presented in the Computational Methods and

Algorithm section. We tested the algorithm on the

National Cancer Institute (NCI) database of chemical

compounds, and the results are detailed in the Results

section with some relevant examples. In closing we give a

brief summary of this study and discuss some future

work.

2. Related work

Numbering and ordering of atoms and groups of

atoms of molecular structures have always been done by

organic chemists, which subsequently led to several

different systems of naming compounds. The

International Union of Pure and Applied Chemistry

(IUPAC) nomenclature rules [2] are the most widely

used. However, these rules only work effectively for very

small molecules and generally are inconsistent, hard to

understand, and easily cause mistakes [3, 4, 5]. The idea

of using graph theory in solving the above problem was

put forward some twenty years ago [6, 7], but never really

caught the attention of chemists.

Recently, the International Union of Pure and

Applied Chemistry (IUPAC) established a project to

develop unique keys for chemical compounds. This is an

ongoing project, which was announced [8] a couple of

years ago. The approach that the scientists are using is in

part based on graph theory. However, the details are yet

to be published. The documentation and algorithm will be

published at the end of the project. Their aim is to

generate a unique key from a graphical input of structural

information of known and as yet unknown compounds.

The keys, known as IUPAC Chemical Identifiers are

alphanumeric text strings that can lead back to the

structure of the compound and that can be digitized to be

used in printed and electronic information.

In calculating a unique identifier for a chemical

compound, one can represent the molecule as a graph as

discussed in the Introduction. Therefore, two molecules

are the same if the graph representations are isomorphic.

Several algorithms [9, 10, 11] have been developed to

check whether two graphs are isomorphic. However,

direct comparison of molecular structures will not be

adequate for this study because the aim is to develop an

algorithm that is capable of generating unique ids for

chemical compounds whether they are presently available

or not. The chemical id problem can be solved if one can

uniquely order the nodes in a labeled graph irrespective of

their original order. These types of algorithms are in fact

very useful in the graph isomorphism problem. Tinhofer

and coworkers [12] developed an algorithm to generate

canonical numbers for a labeled graph. They do this by

considering all adjacent matrices of the graph that belong

to the isomorphism class. Each matrix is read row by row

as a binary number and the matrix with the smallest

number is selected. The graph with this numbering is

considered to be canonically numbered. Also, Brendan D.

McKay [13, 14] has developed an algorithm to generate a

canonical labeling map of a labeled graph. This algorithm

has been implemented in the program called “nauty.”

3. Computational methods and algorithms

3.1 Overview

We begin with an overview of the algorithm. The

first step in generating the UCK is to represent different

types of covalent bonds, i.e., single, double or triple by

just a single bond between atoms of the molecule, so that

we can focus only on the connectivity and also because

there is no unique way to determine double and triple

bonds. We also disregard the overall charge on the

molecule. If desired, variants of the algorithm below

could incorporate this information as additional labels.

The molecule is now considered as an undirected labeled

graph G = (V, E) consisting of a finite set of vertices V

and a finite set of edges E. The set of atoms in the

molecule is the vertex set, V and the set of covalent bonds

between the atoms is the edge set, E. Each edge has a

unity weight. At this stage, the labels in the graph G

represent atoms and do not reflect any of the local

structure around the atom.

The next step in the UCK algorithm is to replace the

labels with new labels that capture some of the local

connectivity and chemical environment around each

atom. Atoms with similar connectivity will end up

having similar labels. In the next step of the UCK

algorithm, the lengths of the shortest paths between each

pair of vertices of the vertex set V of the graph G are

generated. The path labels are produced by concatenating

the source label, the path length, and the destination label.

At every stage of labeling we follow a rule based

lexicographical ordering so that the whole procedure is

invariant to the changes in ordering of the vertex set V. A

lexicographical ordering of the labels of all pair of

shortest path sets is done. The labels are concatenated to

form a string and prefixed by the molecular formula of

the molecule. The string thus obtained uniquely

represents the molecule.

O1

C2
C3

C4
C5

C6

H7

H8

H9

H10

C2
C3

H7

H8

O1

C4
C5

H9

C6
H10

l2
l3

l7

l8

l1

l4
l5

l9

l6
l10

Initialization

Vertex re-

labeling

Shortest path

labeling

Unique key

generation

C5H4O1- k11 … k1010

kij are the labels

for shortest path

set from i to j and

lexicographically

ordered.

Figure 2. An example showing the procedure to generate a

unique string for a given molecule.

Here is part of an example. A more detailed

description of the algorithm follows. A schematic

representation of a molecule that may or may not exist is

shown in Figure 2 with single, double and triple bonds

and shows an overview of the algorithm. We represent the

double and triple bonds as single bonds, so that it can be

represented as a graph G = (V, E) where the vertex set V

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the edge set E = {(1,2),

(2,3), (3,4), (4,5), (5,6), (2,7), (3,8), (4,9), (6,10)}. The

list <O, C, C, C, C, C, H, H, H, H> is the label list for

elements corresponding to V. Observe that though the

connectivity of the second vertex is different from that of

the third to the sixth they all have the same labels.

3.2 Algorithm

3.2.1 Initial setup

The first step is to represent different types of

covalent bonds as single bonds. Next we consider the

molecule as an undirected graph G = (V, E) consisting of

a finite set of vertices V and a set of edges E. The set of

atoms in the molecule is the vertex set, V and the set of

covalent bonds between the atoms is the edge set, E. The

weight function is defined as w: E {1}.

3.2.2 Labeling of the vertices

For a depth d, we define (d) inductively from (d-1).
(d) re-labels each node in G.

Step 0:

Define (0) (b) = label (b), where b is a node in Graph

G and (d) is the label map.

Step 1:

Fix node ‘a’ and let b1, … , bk be its children.

Step 2:

Compute (d-1) (b1), … , (d-1) (bk)

Step 3:

Remove all occurrences of a from (d-1) (b1), … , (d-1)

(bk), lexicographically order them to produce the string
(d-1) (bi1) … (d-1) (bik).

Step 4:

Define (d) (a) = label (a) (d-1) (bi1) … (d-1) (bik)

3.2.3 Labeling of shortest paths

Re-label G with labels (2) (we use d = 2 in this

work). Call this G’. Fix a V of G’ for each b V of G’.

Define µ(b) = The concatenated string <label (a) n label

(b) >, where n = length of shortest path from a to b.

3.2.4 Generate unique key µ(G) for graph G

µ(G) = Chemical formula-Lexicographically Ordered

string < µ(b) | a V, b V of G’> µ(G) is the unique

key.

3.3 Example

Let us consider benzoic acid (C7H6O2).

C4

C5

C9

C6

C8

C7

C2

O1

O3

H10

H15

H14

H13

H12

H11

C9

C8

H15

H14

C4

C5

C2

O1

O3

H10

H11C6

C7

H13

H12

Initialization

Figure 3. Structure of benzoic acid (NCI number = 149).

The new label for the vertices is shown in Table 1 below.

Table 1. Showing new labels generated.

Vertex Number New Label
(2)

1 OCCOH

2 CCCCOOH

3 OCCO

4 CCCHCCHCOO

5 CCCCCCHH

6 CCCHCCHH

7 CCCHCCHH

8 CCCHCCHH

9 CCCCCCHH

10 HOC

11 HCCC

12 HCCC

13 HCCC

14 HCCC

15 HCCC

The unique string (G) is shown below:

C7H6O2-CCCCCCHH0CCCCCCHHCCCCCCHH0CCCCCCHHCCC

CCCHH1CCCHCCHCOOCCCCCCHH1CCCHCCHCOOCCCCCCHH

1CCCHCCHHCCCCCCHH1CCCHCCHHCCCCCCHH1HCCCCCCC

CCHH1HCCCCCCCCCHH2CCCCCCHHCCCCCCHH2CCCCCCHH

CCCCCCHH2CCCCOOHCCCCCCHH2CCCCOOHCCCCCCHH2CC

CHCCHHCCCCCCHH2CCCHCCHHCCCCCCHH2HCCCCCCCCCH

H2HCCCCCCCCCHH3CCCHCCHHCCCCCCHH3CCCHCCHHCCC

CCCHH3HCCCCCCCCCHH3HCCCCCCCCCHH3HCCCCCCCCCH

H3HCCCCCCCCCHH3OCCOCCCCCCHH3OCCOCCCCCCHH3OC

COHCCCCCCHH3OCCOHCCCCCCHH4HCCCCCCCCCHH4HCCC

CCCCCCHH4HOCCCCCCCHH4HOCCCCCOOH0CCCCOOHCCCC

OOH1CCCHCCHCOOCCCCOOH1OCCOCCCCOOH1OCCOHCCCC

OOH2CCCCCCHHCCCCOOH2CCCCCCHHCCCCOOH2HOCCCCC

OOH3CCCHCCHHCCCCOOH3CCCHCCHHCCCCOOH3HCCCCCC

COOH3HCCCCCCCOOH4CCCHCCHHCCCCOOH4HCCCCCCCOO

H4HCCCCCCCOOH5HCCCCCCHCCHCOO0CCCHCCHCOOCCCH

CCHCOO1CCCCCCHHCCCHCCHCOO1CCCCCCHHCCCHCCHCO

O1CCCCOOHCCCHCCHCOO2CCCHCCHHCCCHCCHCOO2CCCH

CCHHCCCHCCHCOO2HCCCCCCHCCHCOO2HCCCCCCHCCHCO

O2OCCOCCCHCCHCOO2OCCOHCCCHCCHCOO3CCCHCCHHCC

CHCCHCOO3HCCCCCCHCCHCOO3HCCCCCCHCCHCOO3HOCC

CCHCCHCOO4HCCCCCCHCCHH0CCCHCCHHCCCHCCHH0CCC

HCCHHCCCHCCHH0CCCHCCHHCCCHCCHH1CCCCCCHHCCCH

CCHH1CCCCCCHHCCCHCCHH1CCCHCCHHCCCHCCHH1CCCH

CCHHCCCHCCHH1CCCHCCHHCCCHCCHH1CCCHCCHHCCCHC

CHH1HCCCCCCHCCHH1HCCCCCCHCCHH1HCCCCCCHCCHH2

CCCCCCHHCCCHCCHH2CCCCCCHHCCCHCCHH2CCCHCCHCO

OCCCHCCHH2CCCHCCHCOOCCCHCCHH2CCCHCCHHCCCHCC

HH2CCCHCCHHCCCHCCHH2HCCCCCCHCCHH2HCCCCCCHCC

HH2HCCCCCCHCCHH2HCCCCCCHCCHH2HCCCCCCHCCHH2H

CCCCCCHCCHH3CCCCCCHHCCCHCCHH3CCCCCCHHCCCHCC

HH3CCCCOOHCCCHCCHH3CCCCOOHCCCHCCHH3CCCHCCHC

OOCCCHCCHH3HCCCCCCHCCHH3HCCCCCCHCCHH3HCCCCC

CHCCHH3HCCCCCCHCCHH4CCCCOOHCCCHCCHH4HCCCCCC

HCCHH4HCCCCCCHCCHH4OCCOCCCHCCHH4OCCOCCCHCCH

H4OCCOHCCCHCCHH4OCCOHCCCHCCHH5HOCCCCHCCHH5H

OCCCCHCCHH5OCCOCCCHCCHH5OCCOHCCCHCCHH6HOCHC

CC0HCCCHCCC0HCCCHCCC0HCCCHCCC0HCCCHCCC0HCCCH

CCC1CCCCCCHHHCCC1CCCCCCHHHCCC1CCCHCCHHHCCC1

CCCHCCHHHCCC1CCCHCCHHHCCC2CCCCCCHHHCCC2CCCC

CCHHHCCC2CCCHCCHCOOHCCC2CCCHCCHCOOHCCC2CCCH

CCHHHCCC2CCCHCCHHHCCC2CCCHCCHHHCCC2CCCHCCHH

HCCC2CCCHCCHHHCCC2CCCHCCHHHCCC3CCCCCCHHHCCC

3CCCCCCHHHCCC3CCCCCCHHHCCC3CCCCCCHHHCCC3CCCC

OOHHCCC3CCCCOOHHCCC3CCCHCCHCOOHCCC3CCCHCCHC

OOHCCC3CCCHCCHHHCCC3CCCHCCHHHCCC3CCCHCCHHHC

CC3CCCHCCHHHCCC3HCCCHCCC3HCCCHCCC3HCCCHCCC3H

CCCHCCC3HCCCHCCC3HCCCHCCC3HCCCHCCC3HCCCHCCC4

CCCCCCHHHCCC4CCCCCCHHHCCC4CCCCOOHHCCC4CCCCO

OHHCCC4CCCHCCHCOOHCCC4CCCHCCHHHCCC4CCCHCCHH

HCCC4HCCCHCCC4HCCCHCCC4HCCCHCCC4HCCCHCCC4HCC

CHCCC4HCCCHCCC4HCCCHCCC4HCCCHCCC4OCCOHCCC4OC

COHCCC4OCCOHHCCC4OCCOHHCCC5CCCCOOHHCCC5HCCC

HCCC5HCCCHCCC5HCCCHCCC5HCCCHCCC5HOCHCCC5HOC

HCCC5OCCOHCCC5OCCOHCCC5OCCOHHCCC5OCCOHHCCC6

HOCHCCC6HOCHCCC6OCCOHCCC6OCCOHHCCC7HOCHOC0H

OCHOC1OCCOHHOC2CCCCOOHHOC3CCCHCCHCOOHOC3OCC

OHOC4CCCCCCHHHOC4CCCCCCHHHOC5CCCHCCHHHOC5CC

CHCCHHHOC5HCCCHOC5HCCCHOC6CCCHCCHHHOC6HCCCH

OC6HCCCHOC7HCCCOCCO0OCCOOCCO1CCCCOOHOCCO2CC

CHCCHCOOOCCO2OCCOHOCCO3CCCCCCHHOCCO3CCCCCCH

HOCCO3HOCOCCO4CCCHCCHHOCCO4CCCHCCHHOCCO4HCC

COCCO4HCCCOCCO5CCCHCCHHOCCO5HCCCOCCO5HCCCOC

CO6HCCCOCCOH0OCCOHOCCOH1CCCCOOHOCCOH1HOCOCC

OH2CCCHCCHCOOOCCOH2OCCOOCCOH3CCCCCCHHOCCOH3

CCCCCCHHOCCOH4CCCHCCHHOCCOH4CCCHCCHHOCCOH4H

CCCOCCOH4HCCCOCCOH5CCCHCCHHOCCOH5HCCCOCCOH5

HCCCOCCOH6HCCC

As we can see, the length of the generated string is

very large, so we used the md5 algorithm to generate a

hex digest for the string. The hex digest is

39BF9B334B172E4E71E76B93C830B47E. From this

point on, we will only use hex digest of md5 to represent

the unique string.

4. Results

We implemented the algorithm in the C

programming language and tested it on 236,917 chemical

compounds in the NCI database of chemical compounds.

The input was a trimmed version of a PDB file that

contains the atomic symbols and their spatial coordinates.

We calculated the bond information and initialized it. We

represented the graph in the form of an adjacency matrix

and ran our UCK algorithm. The output was then piped to

the md5 algorithm to generate the UCK hex digest.

We generated UCK strings and the UCK md5 hex

digest for 236,917 data sets consisting of a variety of drug

molecules, including, in many cases, variants of the same

molecule. The results are summarized in Table 2. By

variants of the same molecule we mean data sets (which

represent chemical compounds) that differ in the ordering

of the atoms and/or their spatial orientation. The NCI

database has many molecules whose structures are very

similar but are different molecules. There are also

molecules that have the same molecular formula but

different structural formulas.

Table 2. Summary of number of compounds studied.

Description Number Remarks

Total number of

chemical

compounds.

236,917 Includes some

compounds with

duplicate entries.

Number of

chemical

compound with

single entry.

203,384 All gave unique

UCK.

Number of

chemical

compound with

two or more

entries.

33,533 The UCK

algorithm gave

unique labels to

distinct

compounds. The

UCK algorithm

gave the same

label to the same

compound

occurring in

multiple entries.

Our algorithm produces excellent results, generating

the same key for variants of the same molecule and

different keys for different compounds. The algorithm is

invariant to changes in input ordering of atoms and rigid

transformations. We were able to recognize molecules

that have more than one entry in the database with

different database entries. For example, consider two

molecules with NCI numbers 30783 and 206631 (Figure

4). Though they have different NCI numbers they are the

same molecule. A snapshot of the NCI database is given

below, and also the hex digest generated by our algorithm

(Table 3). The two data sets have different ordering of

atoms and slightly different spatial orientation. Also

shown in Table 3 are the hex digest for two molecules

with NCI numbers 91771 and 97338 that are the same but

different in their respective conformations.

30783

206631

N
+

O N

OCH
3

H

H

H

H

H

N
+

O N

OCH
3

H

H

H

H

H

Figure 4. Structure of 1-methyl-2-(trimethyl- 5-aznyl)ethyl

carbamate with different NSC numbers.

Table 3. Snapshot of NCI database and the hex digest (last

column) generated by our algorithm.

NSC

Number

Formula md5 hex digest generation

of UCK

30783 C7H17N2O2 02994BC7A283073ED9C

1730E2F37EFCD

206631 C7H17N2O2 02994BC7A283073ED9C

1730E2F37EFCD

91771 C38H42N2O6 5C0F9A8F0ECC0BAF32

CBCA62DA571F42

97338 C38H42N2O6 5C0F9A8F0ECC0BAF32

CBCA62DA571F42

The algorithm is sensitive to changes in connectivity

even at the remotest portions of the molecule, which

makes it very effective in detecting different chemical

compounds that are very similar. Figure 5 shows two

pairs of compounds that are quite similar. Table 4 gives

the results of our algorithm and illustrates the efficiency

of the algorithm for molecules with small and difficult to

detect changes in structures. We can observe that their

UCK keys are different.

22433 89274

SO O

O
H

O
H

SO O

O
H

O
H

9587 9834

Figure 5. Structures of dibenzo[a,h]anthracene (22433) and

benzo[b]chrysene (89274), 4-hydroxy-1-naphthalenesulfonic

acid (9587) and 5-hydroxy-1-naphthalenesulfonic acid (9834).

Table 4. Snapshot of NCI database and the hex digest (last

column) generated by our algorithm for molecules with changes

at remote parts of the molecule.

NSC

Number

Formula md5 hex digest generation

of UCK

22433 C22H14 A15F6359F7AC44C1A90C0

F90598664B4

89274 C22H14 7A4A4AF922300C12704238

10B748FAF5

9587 C10H8O4S 6BEAF3C856A2C1318F306

DDB0E7F888A

9834 C10H8O4S 64373D3DB8329F56B6AFA

E59F07AAFC3

For the largest compound (579 atoms) in the database

it took about 5 seconds to generate the unique key. The

results for generating unique keys for the largest

compound and the 236,917 compounds studied are

presented in Tables 5 and 6 respectively. The tests were

carried out on a Dell machine with Dual Xeon 2.4 GHz

processors with hyper threading, 2 gigabyte of RAM, and

approximately 236 gigabyte of disk space on RAID-5 and

running Red Hat Linux 8.0 operating system.

Table 5. Properties and execution time of the large molecule

studied.

Largest Molecule

NCI Number 57300

Atoms 579

Formula C166H328N2O83

md5 hex

digest

generation of

UCK

CE6892FDEBE05614AAC08560A5D

4AE8B

Time taken

for UCK

generation

5.204 seconds

Total length

of the key

(not md5)

5278576 characters

Table 6. Total time required to process the entire data set.

Compounds Time taken

(approx.)

Remarks

236,917
18770.16 sec

(5.214 hrs)

With other

processes taking

up to 98.4% CPU

and using 'nice'.

236,917
12478.42 sec

(3.466 hrs)

With just this job

running.

5. Summary and Conclusions

We have developed an algorithm called the UCK

algorithm that generates unique keys for a wide variety of

chemical compounds. The UCK algorithm views

molecular structures as undirected labeled graphs. The

atoms are represented as the vertices and the edges as the

bonds. The algorithm was experimentally tested on

236,917 compounds from the NCI database, and

generated unique keys for all the uniquely identified

structures. We call these keys Universal Chemical Keys

or UCKs. We have used the UCKs to build distributed

web-service based applications involving protein docking

with data pulled from multiple distributed databases.

Without a unique key such as the UCK, the application

would have no way of knowing whether two distributed

proteins or chemicals were the same or not.

The UCK algorithm depends only upon the structure

of the labeled graph. Distinct labeled graphs give rise to

distinct UCKs. On the other hand, two different labeled

graphs could, in theory, give rise to the same UCK. This

is a calculated trade-off. Distinguishing arbitrary labeled

graphs is NP-hard and hence a fast deterministic

algorithm cannot be expected. On the other hand,

chemical compounds give rise to a restricted class of

labeled graphs - it is likely that our algorithm can be

proven to be unique on various restricted classes of

chemical compounds. We plan to investigate these types

of results and to verify experimentally the properties of

our UCK algorithm on additional databases of chemical

compounds.

In particular, in this study the UCK algorithm uses a

depth d = 2, for labeling the vertices. Using different

depths and dynamically assigning the depth depending

upon the compound gives rise to UCKs that are more

expensive to compute but stronger. We plan on

investigating these trade-offs in future work.

To summarize, the UCK algorithm is a fast and

effective algorithm that provides intrinsic and unique keys

for a wide class of commonly occurring chemical

compounds.

6. References

[1] R. Riverst. The MD5 message digest algorithm, RFC1321,

1992.

[2] IUPAC, Nomenclature of Organic Chemistry, Pergamon

Press: Oxford, 1979.

[3] M. H Klin, O. V. Lebedev, T. S. Pivina and N. S. Zefirov,

“Nonisomorphic cycles of maximum length in a series of

chemical graphs and the problem of application of IUPAC

nomenclature rules”, MATCH 27, 1992, pp. 133-151.

[4] R. C. Read, “The Coding of various Kinds of unlabeled

Trees”, Graph Theory and Computing, Academic Press, New

York, 1972.

[5] R. C. Read, “A new system for the design of chemical

compounds. Coding of cyclic compounds”, Journal of Chem.

Inf. and Comp. Sci., 25, 1985, pp. 116-128.

[6] M. Randic, “On recognition of identical graphs representing

molecular topology”, J. Chem. Phys, 60, 1974, pp. 3920-3928.

[7] A. Prokurowski, “Search for unique incidence matrix of a

graph”, BIT, 14, 1974, pp. 209-226.

[8] Chemistry International, 23, 3, 2001.

[9] V. L. Arlazarov, I. I. Zuev, A. V. Uskov and I. A. Faradzev,

“An algorithm for the reduction of finite non-oriented graphs to

canonical form”, Zh. Vycheil. Mat. Mat. Fiz., 14, 3, 1974, pp.

737-743.

[10] T. Beyer and A. Proskurowski, “Symmetries in graph

coding problem”, Proc. NW76 ACM/CIPC Pac. Symp, 1976, pp.

198-203.

[11] C. Bohm and A. Santolini, “A quasi-decision algorithm for

the p-equivalence of two matrices”, ICC BULLETIN, 3, 1 1964,

pp. 57-69.

[12] M. Klin, C. Rucker, G. Rucker and G. Tinhofer,

“Algebraic combinatorics in mathematical chemistry. Methods

and algorithms. I. Permutation Graphs and coherent (Cellular)

algebras”, Technical Report, Technische Universital Munchen,

TUM-M9510, 1995.

[13] B. D. McKay, “Computing automorphism and canonical

labeling of graphs”, International Conference on Combinatorial

Mathematics, Canberra (1977), Lecture Notes in Mathematics

686, Springer-Verlag pp. 223-232.

[14] B. D. McKay, “Practical Graph Isomorphism”, Congressus

Numerantium, 30, 1981, pp. 45-87.

†

Robert Grossman is also with Open Data Partners.

