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Abstract

With the emergence of high performance networks, clusters of workstations
can now be connected by commodity networks (meta-clusters) or high speed
networks (super-clusters) such as the very high speed Backbone Network
Service (vBNS) or Internet2’s Abilene. Distributed clusters are enabling a
new class of data mining applications in which large amounts of data can be
transferred using high performance networks and statistically and numeri-
cally intensive computations can be done using clusters of workstations.

In this paper, we briefly describe a protocol called the Data Space Trans-
fer Protocol (DSTP) for distributed data mining. With high performance
networks, it becomes possible to move large amounts of data for certain
queries when necessary. This paper describes the design of a high perfor-
mance DSTP data server called Osiris which is designed to efficiently satisfy
data requests for distributed data mining queries. In particular, we describe
1) Osiris’s ability to lay out data by row or by column, 2) a scheduler in-
tended to handle requests using standard network links and requests using
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network links enjoying some type of premium service, and 3) a mechanism
designed to hide latency.

1 Introduction

In this paper we consider some of the issues that arise in distributed data
mining when large amounts of data are moved between sites. One of the
fundamental trade-offs in distributed data mining is between the cost of
computation and the accuracy of results. We assume: 1) that there is a
cost for moving data between sites, and 2) that the most accurate model
is obtained by moving all the data to a single site. Leaving some or all of
the data in place, building local models, and merging the resulting models,
produces a model which is less accurate, but which, in general, is also less
expensive to compute.

The cost of moving data to a central location with the commodity In-
ternet has tended to produce either distributed data mining systems which
build local classifiers and then combine them or data mining systems that
use standard interfaces such as ODBC or JDBC. These protocols work best
when moving relatively small amounts of data to a central location. Exam-
ples of the former include JAM [18] and BODHI [15]; examples of the latter
include Kensington [11].

In a previous paper [22], we have pointed out that there are many inter-
mediate cases in which building classifiers that are close to the optimal one
results in moving some of the data, leaving some of the data in place, build-
ing local classifiers, and combining them. In this paper, we are concerned
with the design of network protocols and middle-ware for distributed data
mining systems which have the ability to move some data and to leave other
data in place. For example, Papyrus [7] is a distributed data mining system
of this type.

Three fundamental challenges faced by distributed data mining systems
are:

Problem A. How can the analysis of distributed data be simpli-
fied?

Problem B. How can the amount of data per site be scaled?

Problem C. How can the number of sites be scaled?

To address Problem A, we introduced a protocol called the Data Space
Transfer Protocol (DSTP) [1]. In this paper, we are concerned with how
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we can design DSTP data servers for distributed data mining which scale
up as the amount of data per site increases (Problem B). We describe a
high performance DSTP server we are designing called Osiris, which is a
component of a distributed and high performance data mining system we
are building called Papyrus [7].

One method of satisfying the computing and i/o requirements for high
performance data mining is to use clusters of workstations [7] [16] [19] —
compute clusters to satisfy the CPU requirements and data clusters to satisfy
the i/o requirements. With the recent advances in high performance net-
works, geographically distributed clusters of workstations can be connected
not only with commodity networks but also with high performance networks
such as the NSF vBNS Network supported by MCI and the Internet2 Abi-
lene Network supported by Qwest. For example, for the distributed data
mining tests reported below, we used a data cluster in Chicago connected
to a compute cluster in Washington, D.C. over a DS-3 link running at 45
Mb/s. Our first DSTP implementation provided approximately 3 Mb/s of
throughput, while our current implementation provides approximately 30
Mb/s of throughput, a 10x improvement. See Table 1.

Based upon our previous experience analyzing the performance of an-
other distributed data mining system we built [10], we decided to focus on
three questions:

What do we store? More precisely, how should we physically layout the data
on the server? By row or by column? Can we precompute intermediate
quantities to speed up queries?

What do we move? More precisely, to what extent should data or meta-
data be moved from node to node? There are several possibilities: we can
move data, we can move predictive models, or we can move the results of
computations. If we decide to move data, we can move data by table, by
row, or by column.

How do we move it? What application protocol should be used for moving
data in data space? How can data be moved in parallel between nodes?
How can QoS be exploited to improve data transport? What is the effect
of latency on data mining queries? What transport protocol should we
use? Given multiple requests to a data server, how should the requests be
scheduled?

The 10x performance gain we mentioned above resulted from careful un-
derstanding of these issues. Section 2 describes related work and background
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material. Section 3 describes data space and the data space transfer pro-
tocol. Section 4 describes the DSTP server and three experimental studies.
Section 5 is the conclusion and summary.

2 Background and Related Work

In this section, we provide some background material and discuss some of
the related work in this area. With the exception of [19] and [16], the work
we know of in this area is limited to data mining over commodity networks.
This section is adapted from [8].

Several systems have been developed for distributed data mining. Per-
haps the most mature are: the JAM system developed by Stolfo et. al. [18],
the Kensington system developed by Guo et. al. [11], and BODHI developed
by Kargupta et. al. [15]. These systems differ in several ways:

Data strategy. Distributed data mining can choose to move data, to move
intermediate results, to move predictive models, or to move the final results
of a data mining algorithm. Distributed data mining systems which employ
local learning build models at each site and move the models to a central
location. Systems which employ centralized learning move the data to a cen-
tral location for model building. Systems can also employ hybrid learning,
that is, strategies which combine local and centralized learning. JAM and
BODHI both employ local learning while Kensington implements a central-
ized approach using standard protocols such as JDBC to move data over the
commodity Internet.

Task strategy. Distributed data mining systems can choose to coordinate a
data mining algorithm over several sites or to apply data mining algorithms
independently at each site. With independent learning, data mining algo-
rithms are applied to each site independently. With coordinated learning,
one (or more) sites coordinate the tasks within a data mining algorithm
across several sites.

Model Strategy. Several different methods have been employed for combin-
ing predictive models built at different sites. The simplest, most common
method is to use voting and combine the outputs of the various models with
a majority vote [4]. Meta-learning combines several models by building a
separate meta-model whose inputs are the outputs of the various models
and whose output is the desired outcome [18]. Knowledge probing considers
learning from a black box viewpoint and creates an overall model by exam-
ining the input and the outputs to the various models, as well as the desired
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output [11]. Multiple models, or what are often called ensembles or commit-
tees of models, have been used for quite a while in (centralized) data mining.
A variety of methods have been studied for combining models in an ensem-
ble, including Bayesian model averaging and model selection [17], partition
learning [6], and other statistical methods, such as mixture of experts [23].
JAM employs meta-learning, while Kensington employs knowledge probing.

Papyrus is designed to support different data, task and model strategies.
For example, in contrast to JAM, Papyrus can not only move models from
node to node, but can also move data from node to node, when that strategy
is desired. In contrast to BODHI, Papyrus is built over a data warehousing
layer which can move data over both commodity and high performance net-
works. Also, Papyrus is a specialized system which is designed for clusters,
meta-clusters, and super-clusters, while JAM, Kensington and BODHI are
designed for mining data distributed over the Internet.

Moore [16] stresses the importance of developing an appropriate storage
and archival infrastructure for high performance data mining and discusses
work in this area. The distributed data mining system developed by Sub-
ramonian and Parthasarathy [19] is designed to work with clusters of SMP
workstations and like Papyrus is designed to exploit clusters of worksta-
tions. Both this system and Papyrus are designed around data clusters and
compute clusters. Papyrus also explicitly supports clusters of clusters and
clusters connected with different types of networks.

3 Data Space and the Data Space Transfer Proto-
col

We begin by describing some of the key concepts following [1].

Data Space. We assume that data is distributed over nodes in a
global network, which we call a data space.

Rows and Columns. Although the data may be more compli-
cated, we assume that the data is organized into tables, and
that each table is organized into rows (records) and columns
(observations). Records may contain missing values.

Catalog Files. Each DSTP server has a special file called the cat-
alog file containing meta-data about the data sets on the server.
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Horizontal Store: Store Size = 4.4 GB
NC ADR in Mb/s TDT in Giga bytes TTT in seconds EPR in Events/second
1 3.06 4.4 11777.5 64
2 6.07 4.4 5926.59 253
4 10.05 4.4 3590.40 655
8 16.92 4.4 2132.05 2811
16 23.32 4.4 1550.91 7731
32 34.93 4.4 1032.24 23245

Vertical Store: Store Size = 4.0 GB
NC ADR in Mb/s TDT in Mega bytes TTT in seconds EPR in Events/second
1 1.39 269.5 1549.05 400
2 2.75 269.5 797.00 1554
4 3.81 269.5 566.42 4377
8 6.75 269.5 320.45 15482
16 9.74 269.5 223.05 44590
32 13.96 269.5 152.52 126918

Table 1: Performance analysis of horizontal vs. vertical stores.
NC - Number of clients requesting data
ADR - Aggregate Data Rate
TDT - Total Data Transferred
TTT - Total Time Taken for completion of application
EPR - Events Processing Rate
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DSTP. We assume that there is a server on each node which can
move data to other nodes using a protocol called the data space
transfer protocol (DSTP). Depending upon the request, DSTP
servers may return one or more columns, one or more rows, or
entire tables. DSTP servers can also return meta-data about
tables and the data they contain.

Universal Correlation Keys. A row may have one or more keys.
Certain keys called Universal Correlation Keys (UCK) are used
for relating data on two different DSTP servers. For example,
key-value pairs (ki, xi) on DSTP Server 1 can be combined with
key-value pairs (kj , yj) on DSTP Server 2 to produce a table
(xk, yk) in a DSTP client. The DSTP client can then find a
function y = f(x) relating x and y.

Since DSTP client applications need only collect meta-data from the cat-
alog files and need only move the relevant columns, these type of applications
tend to scale better as the number of sites increases (Problem C) than dis-
tributed data mining applications which must move entire files. Recall that
we are interested in the case in which some data is moved. Of course, if
sufficient accuracy can be obtained by local analysis followed by combining
models, this is usually less expensive than strategies which require that data
be moved.

Notice that from this perspective, distributed databases are concerned
with the efficient updates of distributed rows, while distributed data mining
applications are concerned with the efficient reading and analysis of dis-
tributed columns.

In the next section, we describe our efforts to produce DSTP servers
which can efficiently manage large data sets.

4 The Osiris DSTP Server

Osiris is a high performance DSTP Server which is designed to provide effi-
cient read access to data. In our design, efficient read access is delivered by
implementing high performance storage support, high performance network
transfer support, and differentiated service support.

In this section we discuss our implementations of these support mecha-
nisms and some preliminary experimental results which attempt to quantify
the relative performance gains for each technique. All three mechanisms
are implemented in process space and do not require any special tuning of

7



the underlying hardware or operating systems. We felt it was important to
provide performance improvements that were independent of the underlying
system in order to increase portability.

4.1 Rows and Columns

Tabular data may be laid out on disk by row or by column. Since data from
disk is transfered by block, certain queries will be more efficient when the
data is laid out by row (horizontally) and other queries will be more efficient
when the data is laid out by column (vertically).

DSTP client applications accessing data may request either rows of data
or columns of data. If a column of data is requested and the underlying
storage layout is horizontal, then each block will contain quite a bit of un-
wanted data. The same is true if a row of data is requested and underlying
layout is vertical.

Since horizontal layouts speed up certain distributed data mining queries
and vertical layouts speed up others, Osiris stores data in both formats. Al-
though this doubles the amount of space required, the I/O traffic is reduced
significantly. Since Osiris is a distributed system, the I/O traffic ultimately
passes through a network communication link. Since network bandwidth is
sufficiently more expensive than disk capacity, we feel the 2X increase in
required storage is more than compensated for.

The following results are from a proof of concept DSTP data server
located at the University of Illinois at Chicago being accessed by multiple
clients located at an Internet2 member facility in Washington, D.C. called
Highway One. The two sites are connected by the NSF/MCI vBNS Network.
Even though vBNS is an OC-3 network offering maximum bandwidth of 155
Mb/s, the end nodes at Highway One were connected via a DS-3 link, which
limited the maximum bandwidth of the testbed to 45 Mb/s.

For this test, we used an application benchmark we developed called
the Event Benchmark, which is broadly derived from high energy physics.
The data consists of a large collection of events, with each event containing
several hundred attributes. An energy like function is computed from the
attributes of an event and the energies of the event are histogrammed.

To better understand quantitative effects of the Horizontal/Vertical Lay-
out strategy, we first laid out the data horizontally and ran the application,
and then we laid out the data vertically and ran the application.

In the first case, all the event data was stored as rows (i.e., each event was
a row). In the second case, the event data was stored attribute by attribute
as columns. The Event Benchmark specifies that event level summary data is
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NC ART-P in seconds ART-PS in seconds ART-C in seconds ART-CS in seconds
1 606.3 570.4 422.1 447.4
2 577.5 557.5 445 463.5
3 574.4 558.5 568.5 581.3
4 566.6 566.5 715 740
5 565.9 562.16 880.9 892.7

Table 2: Performance of Diff-Serv scheduler
NC - Number of clients requesting data per service type
ART-P - Average run-time for premium clients (no scheduling)
ART-PS - Average run-time for premium clients (with Diff-Serv scheduling)
ART-C - Average run-time for commodity clients (no scheduling)
ART-CS - Average run-time for commodity clients (with Diff-Serv schedul-
ing)

to be stored separately and analyzed at run-time to find out which attributes
are to be requested and processed. In other words, this particular application
requests columns of data based on some criteria. Therefore, we expected
that a vertical layout should provide better performance.

Table 1 shows the performance results. The Event Processing Rate
(EPR) is an an application benchmark of efficiency. Aggregate Data Rate
(ADR) and Total Data Transferred (TDT) are system performance mea-
sures. The desired result is to maximize application efficiency with the least
load on the system. Clearly, the vertical layout provided better performance,
as expected.

This experiment demonstrates the effect that layout has on application
performance. Because we cannot predict whether applications will request
rows or columns, storing the data both horizontally and vertically will guar-
antee performance gain.

4.2 Differentiated Service Support with Diff-Serv Scheduler

Osiris is being developed to simultaneously serve clients on both commodity
and high performance networks. Because of the premium nature of high
performance networks, it is desirable that clients on these networks have
some precedence over clients on commodity networks. Treating premium
clients and commodity clients differently constitutes a type of Quality of
Service(QoS) called differentiated services [20].

Differentiated service support in Osiris is another mechanism that at-
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TM TT in seconds AATR in Mbps
traditional single socket 96 8.3

PSocket size 2 57 14.0
PSocket size 3 34 23.5
PSocket size 4 30 26.7
PSocket size 5 26 30.8
PSocket size 6 26 30.8
PSocket size 7 26 30.8

Table 3: Performance of Transport Layer Multiplexing with PSocket. (Note:
The practical limit of the 45 Mb/s DS-3 appears to be about 35 Mb/s.)
TM - Transport Mechanism
TT - Transfer Time for 100 MBytes
AATR - Application Apparent Transfer Rate

tempts to contribute to the requirement of efficient read access. In this
context, efficiency refers to system wide resource utilization as opposed to
per process performance.

Because the currently popular Internet protocol suite (IP) does not sup-
port any kind of QoS mechanism, we chose to implement differentiated
service support as a characteristic of the scheduling mechanism for client
requests to Osiris. We refer to this scheduler as the Diff-Serv Scheduler.

When a client attaches to Osiris, it informs the server whether it is a pre-
mium client or a commodity client. Data block requests are then scheduled
for service as they arrive with premium client requests getting preferential
treatment. Please see [12] for full design and implementation details of the
Diff-Serv Scheduler.

For our experimental study, a single server was run on a machine con-
nected to the network through Switched Fast Ethernet (100 Mbps). An
equal number of clients connected to both Switched Fast Ethernet (pre-
mium clients) and Switched Ethernet (commodity clients) were launched
and connected to the server.

The premium clients each made 10,000 random block requests, and the
commodity clients each made 5,000 random block requests. The default
block size for Osiris is 16KB. Every client waited for an exponentially dis-
tributed random delay between block requests. This delay was introduced
to cause a Poisson distribution of request arrivals to the server and was an
attempt to simulate real application behavior.
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Experiments were conducted which compare system performance with
Diff-Serv scheduling turned on against system performance with Diff-Serv
scheduling turned off. Measurements were made with a total of two to ten
clients. The results are presented in Table 2. Please note that when Diff-
Server scheduling is turned off, the system defaults to FIFO scheduling.

The desired results were achieved. In all cases, premium client response
time improved while commodity client response time diminished when our
implementation of Diff-Serv scheduling was turned-on.

4.3 High Performance Network Transfer Support with PSocket

It has been well documented that latency characteristics of TCP over wide
area networks, or more precisely networks with large ”bandwidth · delay”
products, have a significant negative impact on per process communication
performance [13]. Various protocol and implementation level solutions have
been suggested [14] [5]. One technique is for the sender to send multiple
messages to the receiver in parallel [21].

In order to provide high performance network transfer support, we allow
a single process to break up a message and then send the pieces in parallel
over multiple communication links (e.g., TCP sockets) to the receiver who
then rebuilds the entire message. We refer to this technique as Transport
Layer Multiplexing and have implemented a simple-to-use interface for ap-
plication integration called PSocket (as in Parallel Socket). For full details
please refer to [2].

Osiris will use PSockets to increase the data transfer rate on a per client
process basis. The results in Table 3 are from a single, non-threaded sender
process using PSocket, located at the University of Illinois at Chicago, send-
ing data to a single non-threaded receiver process using PSocket located at
Highway One. The two sites are connected by the NSF/MCI vBNS Net-
work. Highway One connects to vBNS via a DS-3 link, which limited the
maximum theoretical bandwidth of the testbed to 45 Mb/s.

The experiment measured the wall clock transfer time of a 100 MByte
buffer. Results show that with a PSocket of size 5, a large portion of the
practical transfer rate of the DS-3 was consumed by the transfer. As a
reference, the transfer rate using traditional, single socket programming was
given.
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5 Conclusion

In general, the less data which distributed data mining systems move, the
less expensive the computation. However, due to the level of accuracy re-
quired or to the nature of the data, it is sometimes necessary to move large
amounts of data between sites. With the emergence of high performance
networks this becomes practical in many circumstances in which it would
have previously been impractical.

In this paper, we have described some of the design considerations for a
high performance data server called Osiris which is part of the Papyrus dis-
tributed data mining infrastructure and presented some experimental results
describing its use on an application benchmark requiring the computation
of histograms.

In particular, we describe a design which supports high performance stor-
age, high performance network transfer, and differentiated network services,
such as commodity links and high performance links. This design provides
at least a 10x improvement over a more naive design. We expect this to
grow to 100x for certain applications and network configurations.
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