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Abstract

Data mining is a problem for which cluster computing provides a competitive
alternative to specialized high performance computers for mining large data sets.
Distribued clusters provide a natural infrastructure for mining large distributed
data sets. Distributed clusters can be connected by commodity networks to form
what we call meta-clusters and by high performance networks to form what we
call super-clusters. In this paper, we describe the design of a system called
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Papyrus which is designed for mining data which is distributed over clusters,
meta-clusters, and super-clusters. We also describe some experimental results
of a preliminary implementation.

1 Introduction

For many problems, clusters of workstations connected with specialized switch-
ing fabrics or high performance networks provide a competitive alternative to
specialized high performance computers, including MPP computers.

Clusters of workstations have proved themselves to be very effective for a
variety of data mining applications [12]. The data mining process involves both
compute intensive and data intensive steps. Clusters serve two fundamental
roles: Data-clusters provide the storage and data management services for the
data sets being mined. Compute-clusters provide the compute services required
by the data cleaning, data preparation and data mining tasks.

It is natural therefore to use distributed clusters as the infrastructure for
distributed data mining. Our interest in this article is to focus on the special,
but important case, in which globally distributed high performance clusters of
workstations are connected with networks supporting different levels of service.

Network quality of service (QoS) is measured along several dimensions: rate
quarantees concerning the amount of data that an application requires, delay
and jitter guarantees concerning the timeliness of delivery, and loss guarantees
concerning the quality of delivery [16]. A network with QoS provides some
type of guarantee along one or more of these dimensions; in contrast, today’s
commodity internet uses a best effort model.

Today a network with high performance links may offer links which are
100x (or more) faster than commodity links. For example, the NFS vBNS net-
work supports OC-3 links (155 MB/s), which in practice provides performance
about 100x faster than the commodity internet. This provides a model for
emerging premium services or differentiated services [28] and [16], which allow
applications, for example, to request services with bandwidth guarantees. We
call clusters (or clusters of clusters) connected with commodity services meta-
clusters and clusters (or clusters of clusters) connected with premium services
super-clusters.

The testbed used for the experimental studies described below consisted of
five workstation clusters (in Chicago, Philadelphia, College Park, Davis, and
Toronto) forming a super-cluster connected to two clusters (in London and
Canberra) to form a meta-cluster. More specifically, the clusters in Chicago
and Toronto were connected by a 155 Mbs network; the clusters in Chicago,
Davis and Philadelphia were connected by 45 Mbs network; and the remaining
clusters were connected by the commodity internet.

We expect meta-clusters and super-clusters to grow more common with the
emergence of the next generation internet. For example, a large company with
distributed operations employing a virtual private network may have operational
data in several cities connected with a high performance network employing pre-
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mium services, while marketing related data may be accessible through a com-
modity network. As the amount of data grows, replacing servers with data and
compute clusters provides a cost effective means of supplying the appropriate
data management and processing capabilities required by data mining.

Concretely, data mining may be viewed as extracting a learning set from one
or more (distributed) data warehouses and applying a data mining algorithm
to produce a predictive model or rule set [14]. Different strategies are possi-
ble, depending upon the data, its distribution, the resources available, and the
accuracy required:

MR (Move Results) Today’s commodity networks can be used to move the
results of local data mining computations to a central site.

MM (Move Models) Commodity networks can also be used to move predictive
models from site to site.

MD (Move Data) Next generation broadband networks also create the possi-
bility of moving large amounts of data.

The majority of the work in distributed data mining has focused on the
first two strategies MR and MM [3]. In this paper, we introduce Papyrus,
a distributed data mining system supporting all three strategies, as well as
mixtures of the strategies. We also describe experimental studies for strategies
MD and MM.

In this paper, we are interested in distributed data mining problems with
the following characteristics: data is available on data clusters, the fundamental
task is to correlate data between two or more different data clusters, different
strategies are available depending upon whether the clusters form a super-cluster
or meta-cluster, and the appropriate compute services are provided by compute
clusters.

Section 2 provides background material and describes related work. The key
concepts underlying the system are reviewed in Section 3. The design of the
system is described in Section 4. The implementation is described in Section
5. Experimental studies are described in Section 6. Section 7 contains the
conclusion and future work.

2 Background and Related Work

This section is based in part on [15].
Several systems have been developed for distributed data mining. Perhaps

the most mature are: the JAM system developed by Stolfo et. al. [26], the
Kensington system developed by Guo et. al. [17], and BODHI developed by
Kargupta et. al. [18]. These systems differ in several ways:

Data strategy. Distributed data mining can choose to move data, to move
intermediate results, to move predictive models or to move the final results of
a data mining algorithm. Distributed data mining systems which employ local
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learning build models at each site and move the models to a central location.
Systems which employ centralized learning move the data to a central location
for model building. Systems can also employ hybrid learning, that is strategies
which combine local and centralized learning. JAM, Kensington and BODHI
all employ local learning.

Task strategy. Distributed data mining systems can choose to coordinate a
data mining algorithm over several sites or to apply data mining algorithms
independently at each site. With independent learning, data mining algorithms
are applied to each site independently. With coordinated learning, one (or more)
sites coordinate the tasks within a data mining algorithm across several sites.

Model Strategy. Several different methods have been employed for combining
predictive models built at different sites. The simplest most common method is
to use voting and combine the outputs of the various methods with a majority
vote [4]. Meta-learning combines several models by building a separate meta-
model whose inputs are the outputs of the various models and whose output
is the desired outcome [26]. Knowledge probing considers learning from a black
box viewpoint and creates an overall model by examining the input and the
outputs to the various models, as well as the desired output [17]. Multiple
models, or what are often called ensembles or committees of models, have been
used for quite a while in (centralized) data mining. A variety of methods have
been studied for combining models in an ensemble, including Bayesian model
averaging and model selection [25], stacking [30], partition learning [11], and
other statistical methods, such as mixture of experts [31]. JAM employs meta-
learning, while Kensington employs knowledge probing.

Papyrus is designed to support different data, task and model strategies.
For example, in contrast to JAM and Kensington, Papyrus can not only move
models from node to node, but can also move data from node to node when
that strategy is desired. In contrast to BODHI, Papyrus is built over a data
warehousing layer which can move data over both commodity and high perfor-
mance networks. Also, Papyrus is a specialized system which is designed for
clusters, meta-clusters, and super-clusters, while JAM, Kensington and BODHI
are designed for mining data distributed over the internet.

All four systems make use of Java. JAM employs Java applets to move
machine learning algorithms to distributed data. Kensington uses Java JDBC
to mine distributed data. Papyrus uses Java aglets [20].

The distributed data mining system developed by Subramonian and Parthasarathy
[27] is designed to work with clusters of SMP workstations and, like Papyrus,
is designed to exploit clusters of workstations. Both this system and Papyrus
are designed around data clusters and compute clusters. Papyrus also explic-
itly supports clusters of clusters and clusters connected with different types of
networks.

Distributed clusters of workstations are an example of what are becom-
ing known as computational grids. A computational grid according to [7] is
a “hardware and software infrastructure that provides dependable, consistent,
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Philadelphia

100 Mbps/
155 Mbps

College Park

50 Mbps/
155 Mbps

Chicago

60 Mbps/
155 Mbps

High Performance 
       Network
10 Mbps/45 Mbps

Figure 1: Clusters in Chicago and Philadelphia are connected with a high per-
formance network to form a super-cluster. The super-cluster is connected with
a cluster in College Park to form a meta-cluster. Clusters are of two types:
data clusters providing data or compute cluster providing cycles. Papyrus ap-
plications have transparent access to any of the data or compute clusters in the
meta-cluster.
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pervasive, and inexpensive access to high-end computational capabilities.” In
[7], grid applications are divided into five classes: 1) distributed supercomputing
applications requiring lots of cpu and memory, 2) high-throughput computing
applications which use otherwise idle resources to tackle large problems, 3) on
demand computing applications which integrate remote resources with local
computation, 4) data intensive computing applications requiring the analysis
of large data sets, and 5) collaborative computing applications which enhance
human to human interactions.

Data mining cuts across each of these classes: data mining applications can
be both cpu and i/o intensive (Classes 1 and 4); data mining algorithms such
as genetic algorithms which require searching a space of hypotheses can exploit
high-throughput techniques (Class 2); data mining has been applied to data
from remote instrumentation (Class 3); finally, the interactive exploration and
visualizaton of large data sets is becoming more common (Class 5).

There are several projects underway developing a computing infrastructure
for grid applications, including Globus [6], Legion [10, 8], and NOW [1]. In
contrast to these systems which are broadly concerned with providing general
grid services to distributed applications, Papyrus is focused on just those services
required for distributed data mining over grids built from clusters and clusters of
clusters. The philosophy of Papyrus is to use general grid and cluster services
whenever possible. As grid services such as Globus and Legion mature, we
expect that future versions of Papyrus will be based, in part, upon them.

Similar to grid services such as Globus [6], Papyrus provides a shared (wide
area) persistent data space, transparent remote execution (of data mining pro-
cesses), wide area parallel processing (of data mining processes), and scheduling
(of data mining processes). Of course, Globus provides this for general grid
applications, while Papyrus provides specialized vertically integrated versions
of these services in a framework suitable for distributed data mining. Both
Papyrus and Globus take an “hour glass” layered approach to system design
in which a few protocols and services (the neck of the hour glass) are used to
connect adjacent layers in the system.

Legion [8] advocates an object and component view toward grid services.
Objects have well defined interfaces, communicate with data and control paths
and respond to events broadcast by other objects. Papyrus exploits data paths
between clusters. Clusters communicate by using agents, and data access is via
specialized servers designed for high performance and distributed data mining
rather than through general object services or databases.

The Berkeley NOW Project [1] provides infrastructure for high performance
distributed computing using workstation clusters, including scheduling middle-
ware, a high performance messaging system, and a scalable parallel file system.
Papyrus uses a high performance, light weight object manager [12] instead of
a parallel file system and is designing a scheduler specifically targeted towards
data intensive computations over wide area networks with different levels of
services instead of using a more general purpose scheduler for distributed appli-
cations.
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3 Key Concepts

In this section, we describe some of the key concepts underlying Papyrus fol-
lowing the exposition in [29].

Data Ensembles. In this paper, we restrict our attention to data mining prob-
lems in which we are given 1) a mechanism for partitioning a data set and 2) a
mechanism for combining partitioned data into a single data set. In this case,
we speak of a data partition or data ensemble. For example, when building a
fraud model for credit card accounts, the data may be partitioned by customer,
and separate models built from different sets of customers. As another example,
a delinquency model for credit card accounts may be built from two data sets
– a set of credit card transactions and a set summarizing account level data,
such as when payments were received and for how much. The first example
illustrates what is sometimes called horizontal partitioning – the domain is par-
titioned, while the second example illustrates what is sometimes called vertical
partitioning – the range is partitioned [19].

Data Mining. Data mining can be viewed quite broadly as the semi-automated
extraction of knowledge from data [5]. We take a much narrower point of view,
regarding data mining as the process of extracting a learning set from a data
warehouse and applying a data mining algorithm to produce a predictive model
or rule set [14]. Continuing, the model can be applied to data to obtain a
numerical result, which we view as a vector.

Model Ensembles. In this paper, we also restrict attention to collections or en-
sembles of predictive models which may be combined to produce a single model.
A basic example is provided by predictive models built from partitioned data
and then combined by voting [4]. As another example consider a cluster model,
in which a data set is summarized by specifying the centroids of k clusters. The
model may be partitioned by creating two collections of centroids containing k1

and k2 centroids, where k1 + k2 = k and two cluster models may be combined
by simply concatenating their centroids.

The Fundamental Trade-Off. Large data files may be several orders of magni-
tude larger than a file describing a model, while a model file may be several
orders of magnitude larger than a result vector. In a distributed data min-
ing system, different strategies are possible depending upon whether data files,
model files, or result vectors are moved from node to node.

In general the most accurate result is obtained by moving all the data to
a single node. This is usually also the most expensive. In this paper, we
measure the expense using a cost function which includes both computation
and communication costs. At the other extreme, we can process all the data
locally obtaining local results, and combine the local results to obtain the final
result. In general, this approach is less expensive, but also less accurate. To
summarize, in distributed data mining, there is a fundamental trade-off between
the accuracy desired for the predictive model and the cost one is willing to bear
for the computation.
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Configurations. We assume that there are n different sites connected by a
network. A configuration is given by specifying the following data:

1. A graph with nodes i, i = 1, . . ., n describing the network. One of the
nodes, say the Kth, is the network root where the overall result will be
computed.

2. A vector {Di}
n
i=1

describing the initial distribution of the data.

3. The cost cij (measured in dollars per Gigabyte) to move data from the ith

to the jth node, via the least expensive path.

4. The cost ci (measured in dollars per Gigabyte) to process data at the ith

node into a predictive model.

5. A constant α describing the amount of compression when the data on a
node is processed to compute a predictive model.

4 Strategies

Fix a configuration as defined above. A node can employ one of three different
strategies:

MD Move Data. Ship raw data across the network to another node for pro-
cessing.

MM Move Models. Process the data locally to produce a predictive model and
ship the predictive model to another node for further processing.

MR Move Results. Process the data locally until a result is obtained and ship
the result to another node for further processing.

In general, as we progress from MD, to MM, to MR strategies, there is a loss
of accuracy, but a decrease in the cost of the computation. A complete strategy
moves data, models, and results from node to node until the root produces a
final result.

For some problems, sufficient accuracy is required so that all the data must
be moved to a central root. For other problems, sufficient speed is desired so
that all the computation is done locally. Recall that it takes approximately
24 hours to move a terabyte of data over a OC-3 network. Given terabytes of
data distributed over a meta-cluster of clusters and super-clusters, the correct
strategy can mean the difference between waiting minutes instead of hours.

To simplify the discussion, we only consider mixed strategies involving MD
and MM; the general case can be handled similarly. See [29]. A strategy X as a
matrix of numbers

X = [xij ]
n
i,j=1
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where xij is the amount of data Di that is moved from the ith node to the jth

node for processing by the strategy. After the move, the amount of data at the
jth node becomes D̃j . The cost function for a strategy X is easily computed as

C(X) =
∑

ij

(cijxij + cjxij + cjKαxij) .

The sum is over nodes i which are the sources of data and over nodes j which
are the targets of data.

A critical observation is that in many cases the cost function is convex [29].
In such cases, the least possible error ε0 occurs when all data is moved to a
single node and the largest possible error εmax occurs when the data is evenly

distributed among all nodes. Note that the vector D̃(X) =
(

D̃1, . . . , D̃n

)

de-

fines the relevant data distribution, where each D̃j =
∑

i xij .
We use the following form of the error function for a strategy X :

ε(X) = ε0 + ρD

(

1 −
‖D̃(X)‖

|D|

)

, ρD =
εmax − ε0

1 − 1
√

n

where |D| =
∑

j D̃j is the overall amount of data in the network, ‖D̃‖ is the

usual Euclidean norm of a vector D̃(X), and ρD is a scaling coefficient.
Suppose we are given an error tolerance threshold εtol. We can now find an

optimal strategy by solving the optimization problem:

MinX C(X)

ε(X) ≤ εtol.

It is easy to find examples [29] in which there are intermediate strategies
that are more cost effective than the naive ones of either leaving all the data in
place or moving all the data to a single fixed node. Because of this, it makes
sense to design distributed systems with the flexibility of moving data, moving
predictive models, or moving the results of local computations. This is one of
the key ideas behind the Papyrus system. Papyrus, as far as we know, is the
first distributed data mining system to be designed with this level of flexibility.

5 Architectural Design

Recall that we are interested in distributed data mining systems in which the
data is accessed through data clusters, analyzed using compute clusters, and
where the data and compute clusters are combined using commodity networks to
form meta-clusters and using high performance networks to form super-clusters.

For simplicity, we view a single node as a cluster of size one. In Papyrus,
clusters interact in two ways:
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1. Metadata is moved between clusters using agents. Each cluster has a
single node with is designated as the Cluster Access Point (CAP). Agents
can move queries, predictive models, result vectors, and other metadata
between the CAPs of different clusters.

2. Data is moved between clusters using a distributed data warehouse. In
practice, even with only moderate amounts of data, this is only practical
if the two clusters are connected with a high performance network.

Given the viewpoint described above, in which data mining is viewed as the
process of applying data mining algorithms to learning sets extracted from data
warehouses to produce predictive models, it is natural to design Papyrus as a
layered system, consisting of the following four main layers [13]:

Data warehouse layer. The lowest layer consists of a data warehouse
which is designed for local and distributed clusters of workstations.
Training sets are extracted from the data warehouse. In practice,
small amounts of data can be moved between clusters in general,
and larger amounts of data can be moved when the clusters are
connected with high performance networks.

Data mining layer. The role of the data mining layer is to apply one
or more data mining algorithms to training sets extracted from the
data warehouse to produce predictive models, rule sets, or results.
More precisely, we assume that the input to the data mining layer
is a data set — the learning set — and the output is a model or
ensemble of models. By a model, we mean both predictive rules and
rule sets.

Predictive modeling layer. This layer manages predictive models
and ensembles of predictive models. We have contributed to the
development of an XML [22] mark up language called the Predictive
Model Markup Language (PMML) for predictive models and rule
sets. PMML supports predictive models, ensembles of predictive
models, and all the meta-data required to describe them and use
them effectively [14]. A description of the current draft of PMML
can be found in [23]. The predictive modeling layer handles models
in PMML. Concretely, the data mining layer extracts learning sets
from the data warehouse and produces models or rules in PMML,
which are managed by the predictive modeling layer.

Agent layer. The agent layer moves queries, predictive models, meta-
data, and the results of local computations between the Cluster Ac-
cess Points. We have developed an XML markup language which we
call the Data Discovery Markup Language (DDML) which is used to
describe the queries and metadata associated with a distributed data
mining computation. Agents move DDML metadata and PMML
models between Cluster Access Points. Separately, through control
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expressed in DDML files, data can be moved directly between two
distributed data clusters.

As described above, a query to Papyrus can be processed using three different
strategies (MR, MM, and MD).

Selecting a Query

1. A Papyrus application dispatches agents to gather DDML files from the
various registered CAPs.

2. The DDML files returned by the agents are analyzed by the application
and the user chooses or specifies a query.

Move Results (MR)

3. The DDML query is carried by agents to the appropriate CAPs, where
the query is executed to produce results.

4. The agents return the results in DDML using a commodity network to the
Papyrus application, where they are processed to produce a final result.

Move Models (MM)

3. The query in DDML is carried by agents to the appropriate CAPs, where
the query is executed to produce predictive models.

4. The agents return the predictive models in PMML using a commodity
network to the Papyrus application, where they are processed to produce
a final result.

Move Data (MD)

3. The query and the request to move data in DDML is carried by agents
to the various CAPs. To process the query, data is moved by the data
warehousing layer using a high performance network to a root cluster,
where the query is processed.

4. Agents return the results in DDML from the root cluster to the Papyrus
application, where they are processed to produce a final result.

6 Preliminary Implementation

We have developed two versions of Papyrus following the general design and
ideas sketched above. Papyrus Version 0.8 was developed and tested during
1997 and demonstrated at the Supercomputing 97 Conference in San Jose, Cal-
ifornia in November, 1997. Papyrus Version 0.9 was developed and tested dur-
ing 1998 and demonstrated at the Supercomputing 98 Conference in Orlando
in November, 1998. We are currently developing Version 1.0 of Papyrus.

11



The data management layer of Version 0.8 of Papyrus used a high perfor-
mance, light weight persistent object manager we developed called PTool [12].
Papyrus Version 0.9 used a version of PTool we developed that provided some
support for wide area clusters. In particular, we were able to stripe data over
wide area data clusters. The data management layer of Papyrus Version 1.0
will use a different design, with explicit support for data mining primitives, spe-
cialized protocols for moving data over high performance networks, and explicit
support for multiple network protocols.

Since our main interest was in the system design of a high performance,
distributed data mining system, and not in work related to high performance
data mining algorithms per se, we chose to use standard algorithms for the data
mining layer. We chose the popular C4.5 implementation of decision trees as
the main tool in the data mining layer [24].

We modified C4.5 to work with data clusters and to emit PMML. Papyrus
Version 0.8 used SGML as the basis for PMML. Papyrus Version 0.9 used XML
[22], as will Papyrus Version 1.0. The general design for Papyrus calls for a
layer to manage predictive models in PMML called Anubis. In Versions 0.8 and
0.9 of Papyrus, we did not use a separate layer for this, but rather implemented
the necessary code in the Papyrus applications themselves. For example, some
of the applications combined several PMML models into a single meta-model
using a simple voting strategy.

We built an agent layer called Bast to move queries, predictive models,
results and meta-data between the various data clusters. Bast Version 0.8 used
Agent-TCL [9] to move SGML data describing queries and the other associated
data and metadata managed by Bast. Bast Version 0.9 uses aglets [20] to move
XML data and metadata in a language we designed for the this purpose called
the Data Discovery Markup Language (DMML).

For simplicity, we used the following strategy for moving data and metadata:

1. For data distributed across a super-cluster, we used PTool to move the
data and mine it as if it were locally resident.

2. For data distributed across a meta-cluster, we built predictive models
locally on each data cluster or super-cluster and merged the results with
a voting scheme.

7 Experimental Results

In this section, we describe a series of five experiments which used Papyrus
Version 0.9. We performed two of the experiments in November, 1998 at the
Supercomputing 98 Conference in Orlando. The other three experiments were
conducted afterwards to explore some of the issues that arose in the first two
experiments. We also describe how these experiments influenced the design of
Papyrus 1.0, which is currently under development.

The goal in the first two experiments was to gain information about the
overall suitability of the Papyrus system architecture and design, especially the
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Layer Name Version 0.8 Version 0.9
Agent Bast Agent-TCL

moving PMML
Aglets mov-
ing DDML &
PMML

Predictive Model Anubis unimplemented unimplemented
Data Mining Thoth C4.5 producing

PMML
C4.5 producing
PMML

Data Warehouse Osiris PTool suppport-
ing local clusters

PTool support-
ing local & wide
area clusters

Table 1: Summary of implementation of Version 0.8 and 0.9 of Papyrus. C4.5
was modified to produce SGML for v0.8 and PMML for Version v0.9.

design of the data warehouse and agent layers. We emphasize that our goal was
not to test distributed data mining algorithms per se but rather to improve our
understanding of some of the critical factors effecting a distributed data mining
system operating over networks with different levels of services.

In the first experiment at Supercomputing 98, we analyzed high energy
physics data with a 30 node super-cluster distributed between Chicago, Philadel-
phia, College Park, Davis, Orlando, and Toronto. In the second experiment,
we analyzed health care outcome data with a 6 node meta-cluster in Chicago,
Philadelphia, College Park, Orlando, London and Canberra.

In the first experiment, the super-cluster had access to approximately 480
Gigabytes of high energy physics data, organized into approximately 79 mil-
lion “events,” representing putative particle collisions. We adopted standard
physics analysis code to run on the super-cluster and created an application
benchmark called Event1. The goal with Event1 is to maximize the number of
events analyzed per second. As an example, the Event1 benchmark on a sub-
set of approximately 6 million events, spanning approximately 38.4 Gigabytes
distributed over 14 nodes, took between 18,000 and 54,000 seconds depending
upon the node.

The US data clusters were connected by the NSFs very high speed Back-
bone Network Server (vBNS), which consists of a 622 Mb/sec, fully switched,
Asynchronous Transfer Mode (ATM) internal backbone and 45 Mb/sec - 155
Mb/sec edge ATM links to each site. The Toronto cluster was connected to
the vBNS via a 45 Mb/sec link. The limit for the data analysis on the super-
cluster was essentially the speed with which data could be managed and moved
across the network, which was the responsibility of Papyrus’ data warehouse
layer. Roughly speaking, each network interface of the Papyrus system could
move data at approximately 4 Mb/sec per process, providing an upper bound
per node of approximately 20-30 Mb/sec, and an upper bound per site of ap-
proximately 60-90 Mb/sec.

In Version 0.9 of Papyrus, we used custom code which connected the various
nodes in the supercluster with an appropriate number of sockets. Without
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taking this approach, the performance of the Event1 benchmark was rather
disappointing, despite the presence of the high performance links. In a follow
up experiment described in Table 2, we examined this issue more carefully,
varying the number of sockets connecting two nodes in a supercluster from 1 to
7. On the basis of these two experiments, we made the decision to develop a
library for moving data between two nodes in a supercluster which multiplexes
several sockets to maximize the amount of data transfered per second. This
library will be used in Papyrus Version 1.0.

In the second follow up experiment described in Table 3, the same event data
was arranged two ways: by event and by attribute. For the Event1 benchmark,
although more data was moved with the horizontal layout by event, more events
could be analyzed with the vertical layout by attribute. The difference was over
6x, and could be larger depending upon the query. Of course, other queries
would see the same speed up for exactly the opposite layout. For this reason,
we are investigating supporting both vertical and horizontal layouts in Papyrus
Version 1.

For the second series of experiments at Supercomputing 98, the meta-cluster
analyzed approximately 600,000 health care outcome records comprising less
than a Gigabyte of data, but distributed over three continents. In this case, the
analysis was essentially limited by the congestion of the commodity internet,
which was especially pronounced for the international links. The agent based
communication utilized by the Papyrus cluster layer worked effectively for the
meta-cluster queries we tested.

In these experiments, we combined C4.5 trees [24] built at each local site
into a single classifier using the Papyrus cluster layer Bast. The Papyrus appli-
cation combined the trees using a majority vote, which is a standard technique
when working with ensembles of classifiers [4]. Our interest was understanding
whether Papyrus would work over globally distributed meta-clusters, in which
there were wide variations in latency and bandwidths between the various sites.
We concluded that this approach could work effectively. Since some queries were
not able to complete due to network congestion, we are considering putting ex-
plicit support in Papyrus Version 1.0 for more gracefully handling nodes which
cannot respond in a timely fashion.

In the third follow up experiment, we empirically examined the trade-offs
when moving models (MM) built on distributed data vs. moving the data
(MD) and building a centralized model for the health care outcome data. This
experiment used a super-cluster and a particular application benchmark called
HCOD1. See Tables 4 and 5. For this particular benchmark, essentially the
same accuracy could be obtained by building local trees and merging them
(MM). Moving models was approximately 2.5x faster than moving data. Notice
that with a supercluster moving data (MD) takes essentially the same length of
time whether the supercluster is local or geographically distributed. Of course,
with other queries and other data sets, the loss suffered when employing the MM
strategy might not be acceptable. These observations lead to the cost based
approach to selecting strategies described in Section 4. We plan to implement
this for Papyrus Version 1.0
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Number of Sockets TT in seconds AATR in Mb/sec

1 socket 96 8.3
2 sockets 57 14.0
3 sockets 34 23.5
4 sockets 30 26.7
5 sockets 26 30.8
6 sockets 26 30.8
7 sockets 26 30.8

Table 2: This table shows the result of using more than one socket with mul-
tiplexing to move data between nodes in a supercluster. The practical limit of
the 45 Mb/s DS-3 link appears to be about 35 Mb/s. TT - Transfer Time for
100 MBytes, AATR - Application Apparent Transfer Rate

Horizontal Store: Store Size = 4 GB, Total Data Moved = 4GB
Comp. Servers Processes Events/second Mb/seconds Seconds

1 1 92 4.67 7388
1 2 153 7.7 4466
1 4 242 12.2 2825
1 8 315 15.84 2168
4 4 320 16.12 2140
4 16 448 22.4 1526
8 32 503 25.6 1359

Vertical Store: Store Size = 6.85 GB, Total Data Moved = 0.47GB
Comp. Servers Processes Events/second Mb/seconds Seconds

1 1 392 1.42 2833
1 2 664 2.42 1673
1 4 911 3.17 1218
1 8 951 3.31 1166
4 4 1555 5.64 714
4 8 2498 9.12 444
4 16 3044 10.53 365
4 32 3272 11.32 339

Table 3: Data may be placed on the disk by record (horizontally) or by attribute
(vertically). The optimal choice depends upon the query. This table analyzes
the performance of the Osiris data server for both of these choices for a partic-
ular benchmark query of high energy physics data called Event1. The events
processed per second, the amount of data moved per second, and the total time
in seconds to complete the query are given.
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Data Transfer vs. Model Transfer (5 locations)
Strategy Data Transfer Model Transfer
# LAN WAN C45 LAN WAN LAN WAN
Records DT DT Total Total Total Total
5000 0.6 1.661 9.25 9.85 10.911 17.6 21.1
10000 0.96 2.885 18.62 19.58 21.505 20.91 27.28
50000 3 11.96 156.81 159.81 168.77 86.78 79.56
100000 4.3 21.75 424.14 428.44 445.89 114.03 161.24

Table 4: Query time using different strategies for local (LAN) and wide area
(WAN) clusters connected with high performance links. Columns 2-8 indicates
time in seconds for the health care application benchmark HCOD1. Total refers
to the time required for both the execution time of C4.5 and the time required
to move either the data (DT) or the model (MT) as indicated. DT - Data
Transfer, MT - Model Transfer

# Records Number of Models
1 3 5 7 9 15 21

1000 14.4 14.0 13.6 13.6 15.2 14.8 14.0
5000 14.9 14.96 15.36 15.36 15.12 15.6 15.2
10000 12.7 13.44 12.92 14.32 13.92 14.24 14.16
50000 13.8 11.984 13 12.912 13.072 13.072 13.126
100000 12.8 12.812 12.912 12.844 12.852 12.972 13.128
200000 12.37 12.16 12.284 12.226 12.228 12.198

Table 5: The prediction error in percent as the number of records and the
number of models varies for the HCOD1 application benchmark.
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8 Conclusions and Future Work

As workstation clusters and high performance networks grow more common,
clusters, meta-clusters (clusters linked by commodity networks), and super-
clusters (clusters linked by high performance networks) should prove a popular
infrastructure for mining large and distributed data sets. Papyrus uses a simple
layered architecture and is flexible enough to employ strategies which can either
move data, move predictive models or move the numerical results of computa-
tions over distributed clusters of workstations linked by high performance and
commodity connections.

As described in Section 7, the Papyrus architecture and implementation has
demonstrated the practicality of mining distributed Gigabyte size data sets over
high performance DS-3 and OC-3 networks. With queries taking hundreds to
thousands of seconds, it is important to develop systems which are intelligent
enough and flexible enough to move only the smallest amount of data consistent
with achieving results of acceptable accuracy. This is one of the goals of Papyrus
Version 1.0

Based upon the experiments performed to date using Versions 0.8 and 0.9
of Papyrus, we are currently developing Version 1.0:

1. Effectively using high performance links in Version 0.9 of Papyrus required
that Papyrus applications explicitly make use of multiple sockets to deal
with the well known latency problems of TCP ACKs. A library (PSocket)
is provided in Papyrus 1.0 so that Papyrus applications can transparently
use high performance links.

2. Version 0.9 of Papyrus supports strategies where data is moved, where
models are moved, and where numerical results are moved, but does not
support mixed strategies where this choice varies from node to node. Pa-
pyrus Version 1.0 will remedy this by supporting optimal strategies as
described in Section 4.

3. Version 0.9 of Papyrus supports clusters of workstations linked by high
performance networks and by commodity networks, but cannot effectively
support mixed networks, where nodes may have several connections, each
with a different quality of service. Papyrus Version 1.0 will remedy this
by supporting servers which can effectively schedule requests incorporating
different qualities of service.
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