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1 Abstract

Let K denote a field of characteristic O, and let V = KN

denote the vector space over K of dimension N. Let R
denote the K-algebra of polynomials over V:

N N

Consider the algebra ‘D of derivations of R. Given a deriva-

tion E c D, we are interested in symbolic algorithms for

computing its invariants. To be more precise, the action of
GL(V) on V induces an action on the space of coefficients

C of the derivations. A polynomial over C is called invariant
in case it is invariant under this action.

Our approach to computing differential invariants is to
define an algebraic structure on the space of rooted, labeled
trees 7 and introduce an algebra homomorphism from C to

‘T. Differential invariants are naturally expressed and easily
computed in terms of a few basic operations on the space of

trees.
Our main result is expressed in Theorem 5 and illustrated

in Figure 2 and Table 2. It provides a simple and direct com-

binatorial means of computing differential invariants. The
algorithm underlying Theorem 5 has been implemented in
n..
b++.

We illustrate these ideas by computing all the differen-
tial invariants of vector field systems in the plane V = Kz.
For example, for linear vector fields in the plane, there is

a polynomial basis of invariant containing two polynomi-
als, while for quadratic vector fields in the plane, there is a

polynomial basis containing 16 polynomials [1 I].
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2 Introduction

Let K denote a field of characteristic O, and let V = KN

denote the vector space over K of dimension N. Let R

denote the K-algebra of polynomials over V:

N N

We are interested in the symbolic computation of invariants

associated with derivations of R. By a derivation, we mean

a linear map E : R + R satisfying

E(fg) = fE(g) + gE(f), f,gc R.

Recall that a derivation E of the polynomial algebra R
can be viewed as a vector field on the vector space V with
polynomial coefficients and is associated with the flows of
the nonlinear system

i(t)= I?(z(t)), z(o) = X“ e v. (2)

The hope is that algebraic invariant of E provide infor-

mation about the analytical properties of the flows of the
system.

Note that a derivation of E of R has the form

and each polynomial r“ is of the form given by Equation 1.
Let Dd,N denote the vector space consisting of all derivations
of R such that each polynomial rP is of degree less than or
equal to d.

To define invariants, we must work with the action on
the coefficients of r~ induced by an action on V. To do this,
we need to define the coefficient space

c=cd,N= K”, iM=N(l+ N+ N2+.. +N~),

and a map
Dd,N ~ Cd,N

which sends a derivation E to the point in C determined by
its coefficients:
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Space Description Typical Element

z invariants of R defined via induced action on C p = p(a)

polynomials in C and z’s

;

p = p(a;x)

coefficients of derivations in D a=(a~l, . . .)
D derivations over R E=Ea

R polynomials over V r=

v points u v=

Table 1: An action of Q E GL(V) induces an action on the coefficients a E C of a derivation E 6 R. Invariants are polynomials
in the coefficients a E C stable under this induced action. Note that each line in the table is defined using data from the line
below.

Here all indices range from 1 to N and the lower ones are

symmetric.

Since we have introduced several spaces, we summarize

some of these definitions in Table 1.
Under a linear change of variables in V,

z = Qy, Q E G-L(V)

the corresponding nonlinear system

i(t) = Ea(z(t)), coeffs ajl,,,,,jk 6 C (3)

is transformed into the nonlinear system

j(t) = Eb(y(t)), coeffs b~l ,,,,,jk E C

We are interested in the

Problem A. Find polynomials p over the vector space C =
&,N such that

p(a) = p(b), for all Q 6 GL(V), (4)

where b c C is the vector of coefficients induced from a c C

by Q E GL(V). The polynomial p is called a differential
invariant of the nonlinear system 3. Denote by ~ = &,N
the vector space over K formed by all such polynomials.

We say that an invariant p E Z is reducible in case in can
be written as a polynomial function of invariants of lower

degree. A set of polynomials {pm} is called a basis in case
any invariant p E Z can be written as a polynomial in the

{Pa }, that is reducible with respect to the {pa}.

Problem B. Find a polynomial basis for ~ = ~,J,N.

We emphasize that we are interested in algorithms useful
for the explicit symbolic computation of differential invari-
ant for specific systems. one knows from general principles

[8] and [11] that differential invariants arise by viewing the
coefficients of the vector fields as belonging to the appropri-
ate tensor space and forming all contractions and alterna-
tions.

Our approach to computing differential invariants is to

define an algebraic structure on the space of rooted, labeled
trees T and introduce an algebra homomorphism from C to

T. Differential invariants are naturally expressed and easily
computed in terms of a few basic operations on the space of
trees.

Our main result is expressed in Theorem 5 and illustrated
in Figure 2 and Table 2. It provides a simple and direct com-
binatorial means of computing differential invariants. The
algorithm underlying Theorem 5 has been implemented and
extended as part of the dissertation [2].

We illustrate these ideas by computing all the differen-
tial invariants of vector field systems in the plane V = K2.

For example, for linear vector fields in the plane, there is

a polynomial basis of invariants containing two polynomi-
als, while for quadratic vector fields in the plane, there is a,
polynomial basis containing 16 polynomials [11].

Our contribution in this paper is to point out that work-
ing with trees gives a simple, direct means for symbolically
computing differential invariants for vector field systems. At

this time, we can use trees to write down invariants (Prob-
lem A), but we do not have a simple means of identifying a

basis (Problem B). Our method applies to polynomials co-

efficients in Cd,N, for any degree d and dimension N. We

do not know of other explicit symbolic results for d >2 or
N>2.

3 Background and Related Work

The theory of algebraic invariants, that is the theory of in-
variant of polynomials in R, has been well studied. Re-

cently, there has been renewed interest, especially from the

algorithmic viewpoint. Sturmfels in particular has devel-
oped a number of interesting relationships between algebraic
invariant theory and the theory of Grobner bases [13].

The theory of differential invariants, that is the theory
of invariants of differential polynomials in D, is much less
well understood. Closest to the viewpoint here, is the work

of a school headed by Sibirsky and summarized in his book

[11]. There the methods of alternation and contraction from

classical tensor analysis are used to derive invariants and

identities involving determinants are used to compute bases.
In particular, the following theorem from [11] (expressed in
the notation above) is closely related to our results:

Theorem 1 [7] and [11].Polynomials p c P obtained by

applying alternation and total contraction to products of el-
ements of C form a polynomial basis for invariant with re-

spect to G. L(V).

We emphasize again that the general form of invariants is
known from results such as this and the current challenge is
to provide efficient algorithms for actually computing them.

Our approach here is to exploit the Hopf algebra struc-
ture of families of trees in order to organize the combinato-
rial computations required for the symbolic computation of

differential invariants. The goal of using Hopf algebras as
an organizing principle for combinatorial computations was
art iculated by Joni and Rota in [1O]. The close connections
between Hopf algebras and differential algebras was devel-
oped by Nichols and Weisfeiler in [9]. In a companion paper
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to the present one, we develop the differential algebra struc-
ture of families of trees [5], which underlies the approach
here.

More specifically, it is known by the results of Gurevich

[7], for the case of affine invariants (Q c GL(V)), and by
the results of Sibirsky and Taku [12], for the case of orthog-
onal invariants (Q c SO(V)), that a basis of invariants is

provided by alternating and contracting coefficients in C.

4 Algebras of Trees

In this section, we review some material about trees and

derivations from [1] and [4]. Alt bough these results are not
used explicit ly below, several of the constructions below are

more elaborate versions of this material.
Let K denote the real or complex numbers. By a tree

we will mean a finite rooted tree. Let ‘T denote the k-vector
space whose basis is the set of finite rooted trees. We now

define an algebra structure on T. Suppose that al, uz E T

are trees. Let rl, . . .. rr be the children of the root of al. If

uz has n + 1 nodes (counting the root), there are (n + 1)’

ways to attach the r subtrees of al which have TI, . . . . r,

as roots to the tree CTZby making each r~ the child of some
node of U2. The product U1OZ is defined to be the sum of

these (n + 1)’ trees. It can be shown that this product is

associative, and that the trivial tree consisting only of the
root is a right and left unit for this product.

It can also be shown that if each node of the tree (except

for the root) is labeled with a derivation of R, then the

same product turns the vector space whose basis consists
of labeled trees into an algebra. For details, see [3]. We

summarize this discussion with the following theorem.

Theorem 2 [3] (i) The vector space with basis the set of

finite rooted trees is a graded algebra. (ii) The vector space

with basis the set of finite rooted trees, all of whose nodes
(except for the root) are labeled, is a graded algebra.

5 P-Trees

Recall that R denotes the algebra of polynomials over V:

aj,, ajl,j2, . ..~K.

A P-Tree over the polynomial algebra R is a rooted, labeled

tree satisfying

PI.

P2.

P3.

The root has zero or more children; the chiidren, if any,

are labeled with the symbol a.

The nodes which are labeled with the symbol a may
have zero or more children; the children, if any, are
labeled with the symbol x.

The nodes which are labeled with the symbol z have
no children.

We define the meld product of two P-Trees as the tree formed
by identifying the roots of two P-Trees. It is immediate that
the meld product is commutative and associative and that
the unit consists of the P-Tkee consisting of a single node.
Let 7(R) denote the vector space whose basis consists of

P-Trees over the polynomial algebra R. To summarize:

Theorem 3 The vector space T(R) whose basis consists of
P- Trees over the polynomial algebra R is a commutative K-

algebra with respect to the meld product.

Recall that C denotes the coefficient space for derivations of

R, Let P denote the polynomial algebra in the collections
of indeterminates

aEC and Xl, . . .. XNC V*.

Recall that a differential invariant is simply an element of

P which is invariant under the action on P induced by the
action of Q c GL(V) on V.

We now define a linear map

@: T(R)-+P

as follows:

1.

2.

3.

4.

5.

Let a E ‘T(R) be an element consisting of single tree.
Let e denote the number of children of the root.

Label each node of cr, except for the root, with an

index label ,ul, ,M, . . ..

Consider a child of the root labeled with the symbol
a and with the index label ~j. Assume that this node
has children all labeled with symbol x and with index
labels p~l, . . .. pi~. Define

where all indices are summed from 1, . . . . N.

Extend @ by linearity to all of T(R).

It is immediate that:

Theorem 4 The map + is a K-algebra homomorphism.

6 D-Trees and Differential Irrvariants

In this section, we introduce a simple construction on tensor
products of P-trees which yields differential invariants.

Since T(R) is a K-algebra, we can form the tensor prod-
uct

87(R) = T(R)@ @ T(R).

Our construction for differential invariants is graph theoretic

and depends upon connecting nodes of @ ‘T(R) with dotted
lines, In particular, we are interested in doing this in such
a way that for all nodes, except for the roots, either D 1 or
D2 holds:

D 1. A node labeled x is connected with a dotted line to a
node labeled a.

D2. Two nodes labeled x are connected with dotted lines
to a tree consisting of a single root.

Next, we need to define a linear map

as follows:
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1.

2.

3.

4.

5.

6.

We first define p for elements a of the domain which

satisfy Properties D1 and D2 above.

Assume that a contains k non-root nodes. Number

each node with the index-label ~i, for z = 1, 2, ..., with

the provision that if two nodes are connected with a

dotted line then they share the same index-label.

If a contains a node labeled a, labeled with index label
pj and has j children with the index labels ~il, . . .. p~j,
then that node contributes

a(j) = afi~l,,,.,uij

to the sum below.

If a contains a tree with a single node which is attached
with dotted lines to nodes labeled pil and FLiz, then

that node contributes

~(j) = ~wi~ !wi~

to the sum below. Here e is the alternating tensor on
V defined by CW<l’.jp;~ is equal to 1, if (~1, ,P~) ‘s

an even permutation of {1, . . . IV}; is equal to –1, if it

is an odd permutation; and is equal to O otherwise.

Form the sum

N

p(a) = ~ a(l)...a(k)c(l) . ..c(k’).
/J~,...,@~=l

For simplicity, in this Daper, we do not define o for
element; wh(ch do not ~a~isfy Properties D 1 and” D2.

For examples of this map see Figure 2 and the corresponding

Table 2.

Theorem 5 Let V = KN and let R denote the polynomial
algebra over R. Consider elements a E @ T(R) connected
with dotted lines satisfying Properties D1 and D2. Then

p(cY) is a differential invariant for a derivation of R with
respect to GL(V).

Proof We only sketch the proo~ for further details, see

[6]. After unwinding notation, it follows immediately from
Theorem 4 that dotted lines between a node labeled a and

a node labeled z corresponds to contraction, while dotted
lines between two nodes labeled z corresponds to alterna-

tion. The fact that p yields differential invariants then fol-
lows from Gurevich’s Theorem (Theorem 1), proving the
theorem.

7 Experimental Results

We developed a package in C++ to compute differential
invariants. The base package, TREE-ALG, implements a

calculus for trees and is fairly complete. DIFF-INV is the
package that actually compute invariants by enumerating
tensor products a of labeled trees in B’T(R) which satisfy
Properties D1 and D2 and computing the differential in-

variant p(a). The resulting differential invariants were then

analyzed using standard symbolic systems such as Maple.
At the user level DIFF-INV provide a simple command

line interface. The command inv n m k computes the in-
variants of degree k of an n-ary system of order m.

With Theorem 5, it is straight forward to compute differ-
ential invariants for nonlinear systems in the plane V = K2

elgreco% inv 2
n:= 2: d:= 2:

il:=a(mO, mO) :

elgreco% inv 2
n:= 2: d:= 2:

21
k:= 1:

22
k:= 2:

il:=a(ml, mO)*a(mO, ml) :

i2:=a(m0, mO,ml)*a(ml, ml_O, ml_l)*e- (rnl_O, ml-1) :
i3 :=a(rnO,rnl,rnO) *a(rnl,rnl_O,rnl-l) *e_(rnl_O,rnl_l) :
i4:=a(m0, mO,mO_l)*a(ml, ml, ml_l)*e_ (mO_l, ml_l) :

i5:=a(ml,m0,ml-l)*a(mO,ml ,mO-l)*e-(rnO-l,rnl_l) :
i6:=a(m0,m0,mO_l)*a(ml,ml_0,ml) *e-(mO_l,ml_O) :
i7:=a(ml,ml_0,mO)*a(m0 ,ml,mO_l)*e_(mO_l,ml_O) :

i8:=a(m0,mO_0,mO)*a(ml,ml ,ml_l)*e_(mO_O,ml_l) :

i9:=a(ml,m0,ml_l) *a(m0,mO_0,ml)*e-(mO-O,ml_l) :

ilO:=a(mO,mO_O,mO) *a(ml,ml_O,ml)*e_(mO_O,ml_O) :

ill:=a(ml,ml_O,mO)*a(mO,mO_O,ml)*e_(mO_O,ml_O) :

i12:=a(ml,m0,ml)*a(m0,mO_0,mO_l) *e_(mO_O,mO_l) :
i13:=a(ml,ml,mO)*a(m0,mO_0,mO_l)*e_(mO_0,mO_l) :

elgreco!! inv 2 3 1
n:= 2: d:= 3: k:= 1:

il:=a(mO,mO) :
i2:=a(m0,m0,mO_l,mO_2) *e_ (mO_l,mO_2):

i3:=a(m0,mO_0,m0,mO_2)*e_ (mO-0,mO_2):

i4:=a(m0,m0-O,mO_l ,mO)*e_(mO_O ,mO_l):

Figurel: The figure illustrates using DIFF-INV to compute

theinvariants of a nonlinear polynomial system.

whose coefficients are quadratic polynomials. This can be

done either byhand or using DIFF-INV. See [n], for exam-
ple and Table 2. Given the differential polynomials, one can
then compute a basis using standard symbolic packages. It
turns out that there aresixteen of them.

On the other hand, our package is quite helpful to write
down similar invariants for cubic or higher coefficients or for
V = KN, where N >2. Unfortunately there are so many

of them that standard symbolic packages cannot compute

a basis, and our methods, at this time, are not powerful
enough to compute a basis on the basis of properties of the

trees. Forresults inthisdirection, see [2].

The program output use a linear notation a(k,l,n, ...)
to represent the tensor afn,.,. The first index is the upper
index, all others ones are lower indices. Similarly

e_@,l,n, ...)

represents the alternation Ckln. See Figure 1.
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II =
x

awl
WI

IZ = ~ a~~a~~

P3eP33fi5
13 = ~ aEi,p1ac~,p4ap5

a!J2 #4 >/45
14 = ~ %,P1 aff;,p4 P5

I’ = Ea::fi3a:73@4a::’p4’v5

16 =
E

aP1 P5 aV2ati4eV2+6
/J2YP3aW4+5 fi6 PI

Table 2: The first six differential invariants for nonlinear

systems in the plane V = K2 with quadratic coefficients.
All sums are from 1 to 2
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Figure 2: These are the trees corresponding to the first six
differential invariants for planar systems with quadratic co-
efficients listed in Table 2. Except for 12, this is the same
invariant basis as in Sibirsky [11].

8 Discussion and Conclusion

The goal of this paper is to point out that a graph the-
oretic construction on labeled trees provides a simple and

direct means of computing differential invariants for nonlin-

ear differential equations with polynomial coefficients. We
developed a package in C++ implementing this algorithm

and described the results for planar differential equations

with quadratic coefficients.

For example, let V = K2 denote the plane and let R

denote the space of polynomials over V of degree 2 or less.
There is a sixteen dimensional basis for GL(V)-invariants for

derivations of R [7]. This corresponds precisely to rooted,
labeled trees in ‘T(R) satisfying Properties D1 and D2. The
latter are easy to compute.

Let D denote the K-algebra of derivations of R. The
results here are closely related to the recent results in [5]

which show that space of rooted trees, labeled with elements
of D form what is called an R/k-bialgebra, which is the Hopf

algebraic version of a differential algebra.
The results here are unsatisfying in that suitable prop-

erties of trees should lead directly to a basis of invariants.

Work in this direction appears in [2].
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