A PROOF-OF-CONCEPT IMPLEMENTATION
OF PERSISTENCE IN A HIERARCHICAL
STORAGE SYSTEM

Robert Grossman and Xiao Qin
Laboratory for Advanced Computing
University of Illinois at Chicago
Chicago, Illinois

Dave Lifka
High Energy Physics Division
Argonne National Laboratory
Argonne, Illinois

This is a draft of the paper R. L. Grossman, D. Lifka, and X. Qin,
A Proof-of-Concept Implementation Interfacing an Object Man-
ager to a Hierarchical Storage System, Twelfth IEEE Symposium
on Mass Storage Systems, IEEE Press, Los Alamites, 1993, pp.
209-214.

ABSTRACT

The concept of providing transparent access to a collection of files in a
mass storage system is a familar one. The goal of this project was to inves-
tigate the feasibility of providing similar access to a collection of persistent,
complex objects.

We describe an architecture for interfacing a persistent store of complex
objects to a hierarchical storage system. Persistent object stores support
the uniform creation, storage, and access of complex objects, regardless of
their lifetimes. In other words, a mechanism is provided so that persistent
objects outlive the processes which create them and can be accessed in a
uniform manner by other processes.

We validated this architecture by implementing a proof-of-concept sys-
tem and testing the system on two stores of data. These tests indicate



that this architecture supports the creation, storage and access of very large
persistent object stores.

INTRODUCTION

We describe an proof-of-concept implementation of a persistent object
store for complex objects distributed across a hierarchical storage system.
Persistent object stores support the uniform creation, storage, and access of
complex objects, regardless of their lifetimes. In other words, a mechanism
is provided so that persistent objects outlive the processes which create them
and can be accessed in a uniform manner by other processes.

The concept of providing transparent access to a collection of files in
a distributed environment is a familar one. The idea is to be reference
files with name and location transparency throughout a hierarchy of storage
media, with warm files being cached and cool files being migrated [5]. The
goal of this project was to investigate the feasibility of providing similar
access to a collection of persistent, complex objects.

The motivation for this simple. For concreteness, consider the analysis
of high energy physics data. The ease of use gained referencing files with
name and location transparency is well established [9]. These files typically
represent data sets used by working groups. On the other hand, physicists
are not interested in the files per se, but rather, in the events contained in
the files. FEwvents are objects recorded by the detector representing particle
collisions or putative collisions of possible interest. For example, one could
query for all events containing two leptons with equal and opposite charge,
whose energy is between specified bounds. This is the approach taken in [1],
[3] and [2]. This approach requires that objects (in this case the events) be
referenced with name and location transparency.

This is in contrast to the organization of a typical object oriented database.
For example, one typically establishes a database by using a create com-
mand which specifies the size and location of the store. It is then up to the
database adminstrator to juggle the databases among the available physical
devices—this task becomes increasingly difficult as the number and size of
the databases grow.

By an object manager, we mean a system which creates, stores and ac-
cesses objects in a persistent fashion. An object manager is the core of
an object oriented database, but an object oriented database also provides
additional features, such as transactions, back up and recovery, a data man-
nipulation language, etc. Scientific and engineering applications typically
produce large amounts of data which must be stored in an hierarchical stor-



age system. The analysis of the data is often greatly aided by using object
oriented databases [2]. It is a problem of current interest to marry these
two technologies. In this paper, we describe one approach—using an object
manager designed to work in a hierarchical storage system. This provides a
solution which works for data that is historical, that is data which is write
once, read many. By layering other systems on top of this, it is possible to
add functionality to work with non-historical data.

ARCHITECTURE

The system is divided into several modules: a Persistence Manager, a
Persistent Volume Server, and a Persistent Volume Mover. The Persistence
Manager implements persistence for complex objects. We use a modelin
which persistent memory is divided into physical regions called persistent
volumes, or simply volumes. If the Persistence Manager determines that
the object requested is not in a volume currently loaded into persistent
memory, it sends a request for the volume to the Persistent Volume Server.
The Persistent Volume Server determines the bitfile containing the volume
and sends a request for the bitfile to the Bitfile Server, part of the storage
system. The bitfile is returned by the Bitfile Mover, also part of the storage
system, to the Persistent Volume Mover, which extracts the volume from
the bitfile, loads the persistent volume into virtual memory, and sends a
reply to the Persistence Manager indicating that the volume is loaded. See
Figure 1.

The Persistent Volume Server and Persistent Volume Mover should not
be confused with the Physical Volume Repository, which is part of the Mass
Storage System Reference Model [5].

The primary design consideration for the scientific applications we have
in mind is performance. Our target applications contain very large amounts
of experimental or simulated data, which is historical in the sense it is es-
sentially write once, read only. For this reason, we have deliberately kept
the architecture simple, and have not tried to turn it into a general purpose
object oriented database [4]. For example, if transactions are required, they
may be implemented by contructing appropriate layers over this architec-
ture.

Persistence Manager

The Persistence Manager is responsible for creating, storing, and access-
ing complex persistent objects. Objects in a persistent object store each
have a unique id, called a persistent id, or pid. A subset of the objects in
the persistent store are in memory, or virtual memory, at any one time. The



Persistence Manager is also responsible for moving objects from memory to
permanent storage as necessary so that objects may persist after the pro-
cess which created them terminates and so that persistent objects may be
accessed in essentially the same way as transient objects.

Persistent Volume Server

We assume that from the pid of an object it is possible to infer the volume
which holds the object. If the Persistence Manager requests an object with
a pid corresponding to a volume which is not available in (virtual) memory,
it faults, and generates a request for the volume to the Persistent Volume
Server. The Persistent Volume Server then determines the bitfile containing
the persistent volume and sends a request to the Bitfile Server, which is
part of the storage system, for the bitfile. The Persistent Volume Server
also sends a message to the Persistent Volume Mover that the specified
persistent volume is required.

Persistent Volume Mover

In response to a request to the Bitfile Server for a bitfile, the storage
sytem responds by moving the bitfile from the Bitfile Mover, which is part
of the storage system, to the Persistent Volume Mover. The Persistent
Volume Mover extracts the volume from the bitfile, loads it into (virtual)
memory, and sends a reply to the Persistenct Manager indicicating that the
persistent volume has been loaded.

Ithough the Persistent Volume Server and Persistent Volume Mover could
be combined into a single module, we have found it useful to separate them.
One reason is that a high speed data path may be available to move the
volumes, while the request for volumes may come along another path. This
reason also contributed to the decision by the Mass Storage System Refer-
ence Model to separate the Bitfile Server and the Bitfile Mover. Another
reason is that we found we convenient to implement several different Per-
sistent Volume Servers: all shared essentially the same Persistent Volume
Mover.

VALIDATION STUDY

To validate this approach, we did a proof-of-concept prototype using
a simplified version of the architecture. We had already implemented a
Persistence Manager called PTool [7]. For this study, we implemented proof-
of-concept versions of the Persistent Volume Manger and Persistent Volume
Mover. We simulated hooks into a storage system complient with the Mass
Storage System Reference Model [5] by using simple look-up tables which
accessed bitfiles from disk and tape as appropriate.



Figure 1: An architecture for interfacing a persistent object store to mass
storage system.



We tested the system using two stores: a store of trajectory segements
arising in path planning problems [6] and a store of collider events from
a high energy physics experiment [2]. We are currently completing bench-
marks of these tests.

PTool

In this section, we follow [7]. PTool views the persistent object store as
one large persistent memory: the persistent memory is divided into volumes.
PTool assumes that one or more of these volumes are in virtual memory at
a time. Associated to the volumes of persistent memory in virtual memory
is a physical collection of disk blocks. The mapping between persistent
memory and disk blocks is transparent to the PTool clients. Users do not
explicity read or write to persistent memory, but rather simply indicate upon
whether the object belongs to persistent or transient memory by using the
standard (transient) allocation function (for example, “malloc” or “new”)
or a persistent allocation function (for example, “palloc” or an overloaded
“new”). In both cases, accessing the persistent objects is the same as for
regular (transient) data. See Figures 2 and 3. In other words, the protocal
for allocating transient dynamic memory at run time or persistent memory
at run time is essentially the same, but the persistent memory is available
later by other processes. See [8] and [10] for a description of this approach
to persistence.

In order for applications using PTool to access the persistent objects,
the applications need a mechanism to iterate over collections of persistent
objects. In other words, the application must access each persistent object
in turn. For the proof-of-concept system, we used a simple iterator, as
illustrated in Figure 3. For other applications, we have typically used a
container class, such as a set or linked list. In either case, the iterator simply
needs to access the entry point, or starting address, of each persistent object
stored. This is done by accessing an auxillary data structure maintained by
PTool.

We assume that the pid of an object is of the form (VolumelD, Location).
The Location identifies the location of the object within the volume. Two
different objects in different volumes may have the same Location number.
The Location numbers are essentially virtual memory addresses, or, more
accurately, together with an off-set, determine the virtual memory address.

VTool

We wrote a software tool called VTool to implement the Persistent Vol-
ume Server and Persistent Volume Mover, which we describe in this section.
Each physical (persistent) volume corresponds to a fixed-size region of per-



sistent memory. A volume consists of four parts:

Header. The top portion is the header and contains identifier nformation
about the volume.

Object Table. The second portion is the object table and contains the
entry points for all the objects stored in the volume.

Object Area. The third portion is the object area and contains the per-
sistent objects themselves.

Free Area. The fourth portion is the free area and contains available space
for adding new objects to the volume.

We are currently exploring the effect of the size of the physical volumes
upon the performance of the system. Volumes are divided into physical
segments. The current implementation allows for only one volume to be in
persistent memory at a time; future implementations will allow different seg-
ments from different volumes to be in persistent memory at the same time.
Note that this design does not support objects that span across volumes.
This again will be addressed in the next prototype.

FUTURE WORK

Our proof-of-concept system supports the transparent access of multiple
persistent stores and persistent stores consistings of multiple volumes. An
application simply interacts with the Persistence Manager; it is the task of
the Persistent Volume Server to manage the necessary volumes.

As mentioned above, we have implemented only a bare minimum sys-
tem. We are currently making some cosmetic changes: providing alternate
iterators for objects using sets and other containing classes; and interfacing
the system to a large scale storage system. We are also currently working on
fundamental issues related to the system: developing caching and migration
algorithms for collections of objects; extending the system by supporting
large objects, or objects that extend over several volumes; and extending
the system so that several volumes may be loaded into (virtual) memory at
one time.



class Event {

public:
int runNumber;
int tapeNumber;
int eventNumber;
float vertex;
Lepton *leptonl;
Lepton *lepton2;

s

class Lepton {
public:
float pl4];
float charge;
s

main()

{
int db = db_creat("psiEvents");

Event *tl = (Eventx)
palloc(db, sizeof (Event));
tl->leptonl = (Leptonx)
palloc(db, sizeof(Lepton));
t1->lepton2 = (Leptonx)
palloc(db, sizeof (Lepton));

tl->tapeNumber = 2984;
t1->runNumber = 684;
tl->eventNumber = 1849583;
(t1->leptonl)->charge = 0.892;

root_push(db, t1);

db_close(db);
}

Figure 2: Using PTool to create a persistent Event, consisting of two per-
sistent Leptons, together with several persistent integers and a persistent
float.



int db = db_open("PsiSet");
root_iterator r;

Event *tl = r.first();

Event *tl1 = r.next();

db_close(db);

Figure 3: Iterating over the Events in the collection PsiSet.



CONCLUSION

In this note, we described an architecture for working with very large
stores of persistent objects distributed over a hiearchical storage system.
The architecture, in its present form, is suited for working with large amounts
of historical data — data that is write once, read many. By layering other
systems over this, it is possible to build the functionality required for work-
ing with data that is not historical.

The architecture is designed so that persistent, complex objects may
be referenced with name and location transparency. The two main compo-
nents of the architecture are a Persistence Manager and a Persistent Volume
Server. We assume that the persistent store is divided into logical collections
called persistent volumes. Applications requiring persistence interact with
the Persistence Manager. Persistent volumes are transparent to the appli-
cations. The Persistence Manager handles persistence for volumes in the
persistent store, approximately 256MB to 1GB in size. If the required vol-
ume is not loaded in (virtual) memory, a fault is generated and a request for
the volume is passed to the Persistent Volume Server. The Persistent Vol-
ume Server then requests the bitfile containing the volume from the Bitfile
Sever, part of the storage system.

As a final remark, note that there is nothing in this approach to preclude
it from working with data stored using a relational model. We are currently
investigating this.

We implemented a base line proof-of-concept system. From the results
of this system, it looks like this approach is worth developing.

ACKNOWLDEDGEMENTS

This research was supported in part by NASA grant NAG2-513, DOE
grant DE-FG02-92ER25133, and the Laboratory for Advanced Computing.

We are grateful to members of the PASS Project for contributing to this
work.

References

[1] A. Baden and R. Grossman, “Database computing and high energy
physics,” Computing in High-Energy Physics 1991, edited by Y. Watase
and F. Abe, Universal Academy Press, Inc., Tokyo, 1991, pp. 59-66.

[2] A. Baden, L. Cormell, C. T. Day, R. Grossman, P. Leibold, D. Lifka,
D. Liu, S. Loken, E. Lusk, J. F. MacFarlane, E. May, U. Nixdorf, L.

10



[10]

E. Price, X. Qin, B. Scipioni, and T. Song, “Database Computing in
HEP—Progress Report,” Computing in High Energy Physics 1992, to
appear.

A. Baden, C. Day, R. Grossman, D. Lifka, E. Lusk, E. May, and L.
Price, “Analyzing High Energy Physics Data Using Database Comput-
ing: Preliminary Report,” Laboratory for Advanced Computing Tech-
nical Report, Number LAC91-R17, University of Illinois at Chicago,
December, 1991.

E. Bertino and L. Martino, “Object-oriented database management sys-
tems: Concepts and Issues,” Computer, Volume 24-4, 1991, pp. 33-47.

S. Coleman and S. Miller, editors, “Mass Storage System Reference
Model: Version 4 (May, 1990),” to appear.

R. L. Grossman, S. Mehta, X. Qin, “Path planning by querying persis-
tent stores of trajectory segments,” Laboratory for Advanced Computing
Technical Report Number 93-3, University of Illinois at Chicago, 1993,
to appear.

R. Grossman and X. Qin, “PTool: A Software Tool for Working with
Persistent Data”, Laboratory for Advanced Computing Technical Report
Number 93-5, University of Illinois at Chicago, 1993, to appear.

E. Shekita and M. Zwilling, “Cricket: A mapped, persistent object
store,” in A. Dearle, G. M. Shaw, and S. B. Zdonik, Implementing
Persistent Object Bases: Principles and Practice, Morgan Kaufmann,
San Mateo, California, 1991, pp. 89-102.

. D. Shiers, “Distributed storage management in high energy physics,”
Eleventh IEEE Symposium on Mass Storage Systems, IEEE Computer
Society Press, Los Alamitos, California, 1991, pp. 109-112.

1. Williams and M. Wolczko, “An object-based memory architecture,”
in A. Dearle, G. M. Shaw, and S. B. Zdonik, Implementing Persistent
Object Bases: Principles and Practice, Morgan Kaufmann, San Mateo,
California, 1991, pp. 89-102.

11



