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1 Introduction

This paper is concerned with the effective parallel symbolic computation of
operators under composition. Examples include differential operators un-
der composition and vector fields under the Lie bracket. In general, such
operators do not commute. An important problem is to find efficient al-
gorithms to write expressions involving noncommuting operators in terms
of operators which do commute. If the original expression enjoys a certain
symmetry, then naive rewriting requires the computation of terms which in
the end cancel. In [8], we gave an algorithm which in some cases is expo-
nentially faster than the naive expansion of the noncommutating operators.
The purpose of this paper is show how that algorithm can be naturally
parallelized.

In Section 2, we give a careful statement of the problem. In Section 3,
we discuss data structures consisting of formal linear combinations of rooted
labeled trees. We define a multiplication on rooted labeled trees, thereby
making the set of these data structures into an associative algebra. We then
define an algebra homomorphism from the original algebra of operators into
this algebra of trees. In Section 4, we describe an algebra homomorphism
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from the algebra of trees into the algebra of differential operators. The can-
cellation which occurs when noncommuting operators are expressed in terms
of commuting ones occurs naturally when the operators are represented us-
ing this data structure. This leads to an algorithm which, for operators
which are derivations, speeds up the computation exponentially in the de-
gree of the operator. This is described in Section 5. Sections 3–5 follow
the treatment of [8]. In Section 6, we show how the algebra of trees leads
naturally to a parallel version of the algorithm.

Here is a concrete example of the type of computations we are concerned
with. Fix three vector fields E1, E2, E3 in RN with polynomial coefficients
aj

i :

Ei =
N∑

j=1

aj
i

∂

∂xj
, for i = 1, 2, 3.

Considering the vector fields as first-order differential operators, it is natural
to form higher-order differential operators from them, such as the third-order
differential operator

p = E3E2E1 − E3E1E2 − E2E1E3 + E1E2E3.

Writing this differential operator in terms of the ∂/∂x1, . . . , ∂/∂xN yields
a first-order differential operator because of the symmetry of the expression
p causes all second- and third-order terms to cancel.

In this paper we analyse an algorithm for expressing differential operators
p in terms of the commuting derivations ∂/∂x1, . . . , ∂/∂xN in such a way
that second and third order terms which cancel are not computed. In the
example above, the naive computation would require the computation of
24N3 terms, while the algorithm we describe here would involve just the
computation of the 6N3 terms which do not cancel.

We conclude this introduction with some remarks.

1. In actual applications expressions possessing symmetry arise more of-
ten than not. For example, Lie brackets of vector fields possess a great
deal of symmetry. The algorithm we discuss is designed to take ad-
vantage of such symmetries, if they are present, without the necessity
of explicitly identifying the symmetries.

2. Once a set of data structures has been given an algebraic structure, it
becomes natural to view algorithms concerned with simplification as
simply the factoring of a map into the composition of a map into the
algebra of these data structures, and a map from this algebra. This is
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the simple idea which is at the basis of the algorithm we describe. We
expect that this idea will find application elsewhere.

3. See [4] and [3] for previous work on the simplification of expressions.
See [9] and the references contained there for previous work on parallel
symbolic computation.

2 Higher-order derivations

In this section we give a careful statement of the problem and state the
main result. Let R be a commutative algebra with unit over the field k.
(Throughout this paper k is a field of characteristic 0.) A derivation of the
algebra R is a linear map D of R to itself satisfying

D(ab) = aD(b) + bD(a), for all a, b ∈ R.

Let D1, . . . , DN be N commuting derivations of R, that is, for i, j = 1, . . . ,
N ,

DiDja = DjDia, for all a ∈ R.

Suppose that we are also given M derivations E1, . . . , EM of R which can be
expressed as R-linear combinations of the derivations Di; that is, for j = 1,
. . . , M ,

Ej =
N∑

µ=1

aµ
jDµ, where aµ

j ∈ R. (1)

We are interested in writing higher-order derivations generated by the E1,
. . . , EM in terms of the commuting derivations D1, . . . , DN . More formally,
let k<E1, . . . , EM> denote the free associative algebra in the symbols E1,
. . . , EM and let Diff(D1, . . . , DN ;R) denote the space of formal linear dif-
ferential operators with coefficients from R; that is, Diff(D1, . . . , DN ;R)
consists of all finite formal expressions

N∑
µ1=1

aµ1Dµ1 +
N∑

µ1,µ2=1

aµ1µ2Dµ2Dµ1 + · · ·

where aµ1 , aµ1µ2 , . . .∈ R. We let

χ : k<E1, . . . , EM> −→ Diff(D1, . . . , DN ;R)

denote the map which sends p ∈ k<E1, . . . , EM> to the linear differential
operator χ(p) obtained by performing the substitution (1) and simplifying
using the fact that the Dµ are derivations of R.
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Suppose p ∈ k<E1, . . . , EM> is of the form

p =
l∑

i=1

pi,

where each term pi is of degree m. The naive computation of χ(p) would
compute χ(pi), for i = 1, . . . , l. This would yield l m!Nm terms. Assume
CostA(p), the cost of applying algorithm A to simplify p ∈ k<E1, . . . , EM>,
is proportional to the number of differentiations and multiplications. Then

CostNAIVE(p) = O(lmm!Nm)

In Section 5, we describe an algorithm which preprocesses an expression p
in such a way that any terms which cancel after the substitution (1) are not
computed. We show:

Theorem 1 Assume that

(i) p is the sum of l = 2m−1 terms, each homogenous of degree m;

(ii) L = χ(p) is a linear differential operator of degree 1.

(iii) m,N →∞ in such a way that 2m−2m� Nm.

Then
CostBETTER(p)
CostNAIVE(p)

= O

(
1

m2m−1

)
.

In Section 6, we describe how this precomputation can be done as a parallel
computation.

Observe that a Lie bracket of degree m on RN , for large enough N ,
satisfies the hypotheses of the theorem.

3 Trees and differential operators

In this section we describe the connection between algebras and trees which
is essential for the description of the data structures which we use in the
next section, and for the analysis of the algorithms which use those data
structures.

By a tree we mean a rooted finite tree [10]. If {E1, . . . , EM} is a set of
symbols, we will say a tree is labeled with {E1, . . . , EM} if every node of the
tree other than the root has an element of {E1, . . . , EM} assigned to it. We
denote the set of all trees labeled with {E1, . . . , EM} by LT (E1, . . . , EM ).
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Let k{LT (E1, . . . , EM )} denote the vector space over k with basis LT (E1,
. . . , EM ). We show that this vector space is a graded connected algebra.

We define the multiplication in k{LT (E1, . . . , EM )} as follows. Since
the set of labeled trees form a basis for k{LT (E1, . . . , EM )}, it is sufficient
to describe the product of two labeled trees. Suppose t1 and t2 are two
labeled trees. Let s1, . . . , sr be the children of the root of t1. If t2 has n+1
nodes (counting the root), there are (n+ 1)r ways to attach the r subtrees
of t1 which have s1, . . . , sr as roots to the labeled tree t2 by making each si

the child of some node of t2, keeping the original labels. The product t1t2 is
defined to be the sum of these (n+ 1)r labeled trees. It can be shown that
this product is associative, and that the tree consisting only of the root is a
multiplicative identity; see [5].

We can define a grading on k{LT (E1, . . . , EM )} by letting k{LT n(E1,
. . . , EM )} be the subspace of k{LT (E1, . . . , EM )} spanned by the trees
with n+ 1 nodes. The following theorem is proved in [6].

Theorem 2 k{LT (E1, . . . , EM )} is a graded connected algebra.

If {E1, . . . , EM} is a set of symbols, then the free associative algebra
k<E1, . . . , EM> is a graded connected algebra, and there is an algebra
homomorphism

φ : k<E1, . . . , EM>→ k{LT (E1, . . . , EM )}.

The map φ sends Ei to the labeled tree with two nodes: the root, and a
child of the root labeled with Ei; it is then extended to all of k<E1, . . . ,
EM> by using the fact that it is an algebra homomorphism.

We say that a rooted finite tree is heap-ordered in case there is a to-
tal ordering on all nodes in the tree such that each node procedes all of
its children in the ordering. We say such a tree is labeled with {E1, . . . ,
EM} in case every element, except the root, has an element of {E1, . . . ,
EM} assigned to it. Let k{LHOT (E1, . . . , EM )} denote the vector space
over k whose basis consists of labeled heap-ordered trees. It turns out that
k{LHOT (E1, . . . , EM )} is also a graded connected algebra using the same
multiplication defined above. See [6] for a proof of the following theorem.

Theorem 3 The map

φ : k<E1, . . . , EM>→ k{LHOT (E1, . . . , EM )}

is injective.
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4 Simplification of higher order derivations

In this section we define a map

ψ : k{LT (E1, . . . , EM )} → Diff(D1, . . . , DN ;R).

We do this in several steps.

Step 1. Given a labeled tree t ∈ LT m(E1, . . . , EM ), assign the root the
number 0 and assign the remaining nodes the numbers 1, . . . , m.
From now on we identify the node with the number assigned to it.
Let k ∈ nodes t , and suppose that l, . . . , l′ are the children of k.
Fix µl, . . . , µl′ with

1 ≤ µl, . . . , µl′ ≤ N

and define

Rt(k;µl, . . . , µl′) = Dµl
· · ·Dµl′a

µk
γk

if k is not the root
= Dµl

· · ·Dµl′

if k is the root .

We abbreviate this to Rt(k) or R(k). Observe that Rt(k) ∈ R for
k > 0.

Step 2. Define

ψ(t) =
N∑

µ1, . . . , µm=1

R(m) · · ·R(1)R(0).

Step 3. Extend ψ to all k{LT (E1, . . . , EM )} by K-linearity.

The next three propositions describe fundamental properties of the map
ψ. Note that the next proposition is an example of simplification by factoring
χ through the set of labeled trees: we will see that often ψ and φ together
are cheaper to compute than χ.

Proposition 4 (i) The map ψ is an algebra homomorphism.

(ii)

χ = ψ ◦ φ.

Proof: The proof of (i) is a straightforward verification and is contained
in [7]. Since χ and ψ ◦ φ agree on the generating set E1, . . . , EM , part (ii)
follows from part (i).
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5 The cost of computing derivations

In this section, we briefly review the discussion in [8] on the work required
to write an expression composed of noncommuting operators in terms of
commuting operators. This will prepare us for the next section in which we
consider the cost to simplify such expression given several processors. We
make the following asssumptions: p ∈ k<E1, . . . , EM> is of the form

p =
l∑

i=1

pi,

where each term pi is of degree m; the cost of a multiplication is one unit
and the cost of a differention is one unit; the cost of an addition is zero
units; and the cost of adding a node to a tree is one unit, so that the cost
of building a tree t ∈ LT m(E1, . . . , EM ) is m units.

Proposition 5 (i) χ(p) contains lm!Nm terms.

(ii) The cost of computing χ(p) is 2lmm!Nm.

Proof: Suppose pi is of the form Eγm · · ·Eγ1 , for some indices 1 ≤ γ1, . . . ,
γm ≤M . Then χ(pi) is equal to

(
N∑

µm=1

aµm
γm
Dµm) · · · (

N∑
µ1=1

aµ1
γ1
Dµ1).

After expansion there are m!Nm terms, each of which involves m differen-
tions and m multiplications.

Proposition 6 The cost of computing φ(p) is lmm!.

Proof: A monomial of degree m is sent to the sum of m! labeled trees
under the map φ. This follows easily by induction and is contained in [5].
By the assumptions above the cost of constructing a labeled tree with m
nodes (in addition to the root) is m units. Therefore the total cost is lmm!.

Proposition 7 Let σ = φ(p), and denote by |σ| the number of labeled
trees with non-zero coefficients in σ. Then the cost of computing ψ(σ) is
2m|σ|Nm.
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Proof: Fix a labeled tree

t ∈ LT m(E1, . . . , EM ).

From the definition of the map ψ we see that the cost of computing ψ(t) is
2mNm, and hence the total cost is 2m|σ|Nm.

Combining these three propositions gives

Theorem 8 Under the assumptions above, the cost CostNAIVE(p) of com-
puting

χ(p) =
l∑

i=1

χ(pi)

is 2lmm!Nm, while the cost CostBETTER(p) of computing

L = ψ ◦ φ(p)

is lmm! + 2m|σ|Nm.

Theorem 1 now follows.

6 Computing derivations with several processors

In the previous sections, we have shown how trees are naturally associated
with the symbolic computation of higher order derivations. In this section,
we show how trees also lead to natural parallel algorithms for symbolic
computation. Rather than try to state and prove the sharpest results, we
are content to state and prove an illustrative theorem of this type.

The problem is to rewrite the expression p ∈ k<E1, . . . , EM> in terms
of commuting operators when several processors are available. As usual let
χ(p) ∈ Diff(D1, . . . , DN ;R) denote the resulting linear differential operator.
Make the following asssumptions:

1. p ∈ k<E1, . . . , EM> is of the form

p =
l∑

i=1

pi,

where each term pi is of degree m.

2. The cost of a multiplication or addition is one unit and the cost of a
differentiation is one unit; the cost of adding a node to a tree is one
unit, so that the cost of building a tree t ∈ LT m(E1, . . . , EM ) is m+1
units.
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3. We assume that p ∈ k<E1, . . . , EM> is in its simplest form; in other
words, any term Eγm · · ·Eγ1 appears at most once.

4. We assume that there is one processor available for each labeled tree
which arises in the computation.

Notation. Each term pi in p ∈ k<E1, . . . , EM> is of the form

ciEγm · · ·Eγ1 , ci ∈ k.

LabelIndex is defined to be an index taking values between 1 and m. If
LabelIndex = j, then we denote by LabelIndex(pi) the label Eγj in the
term pi of p. In the precomputation, we assign one processor for each rooted
labeled tree in LT (E1, . . . , EM ). Each processor u has the following data
structures associated to it:

1. for each label Ej ∈ {E1, . . . , EM}, a list of processors, denoted Proces-
sorList(Ej) or ProcessorList(u)(Ej);

2. an array TermCount containing counters such that TermCount(u)[i]
gives the number of times that term pi in the polynomial p ∈ k<E1,
. . . , EM>, has contributed to the tree u;

3. a variable TreeCoefficient(u), which will be used to store the coef-
ficient k of the tree t in σ = φ(p).

We say that the processor u = ut is active in case
∑l

i=1 TermCount(u)[i] >
0. In other words, a processor u = ut, where t ∈ LT k(E1, . . . , EM ), is active
in case its TermCount array has some positive entry.

We begin by describing a precomputation.

Step 1. We associate a processor u = ut to each tree in LTk(E1, . . . , EM ),
for k = 1, . . . ,m.

Step 2. Let ut be the processor assigned to the tree t ∈ LT k(E1, . . . , EM ),
for k < m, in Step 1, with labels Eγk

, . . . , Eγ1 . Let Eγk+1
be a label.

The tree t yields k + 1 trees labeled with Eγk+1
, . . . , Eγ1 which arise

by attaching the node labeled Eγk+1
to the tree t in all possible ways.

Since these are labeled trees, they have already been assigned a proces-
sor by the step above. Let u1, . . . , uk+1 denote these processors. In this
step, we create the list ProcessorList(Eγk+1

, u) containing the pro-
cessors u1, . . . , uk+1. We do this for each label Eγk+1

∈ {E1, . . . , EM}.
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(* Step 0 *)
for each processor u do simultaneously

for i := 1 to l do
TermCount(u)[i] := 0;

end;
end;

(* Step 1 *)
LabelIndex := 1;
for i := 1 to l do

TermCount(ui)[i] := 1;
end;
(* In Step 1, ui denotes the tree with two nodes,
in which the node other than the root is
labeled with LabelIndex(pi). *)

(* Step 2 *)
for LabelIndex := 1 to m− 1 do

for each active processor u = ut for which
t has LabelIndex + 1 nodes do simultaneously
for i := 1 to l do

for all u′ ∈ ProcessorList(LabelIndex(pi), u) do
TermCount(u′)[i] := TermCount(u′)[i]

+TermCount(u)[i];
end;

end;
end;

end;

(* Step 3 *)
for each active processor u = ut for which

t has m+ 1 nodes do simultaneously
TreeCoefficient(u) := 0;
for i := 1 to l do

TreeCoefficient(u) := TreeCoefficient(u)
+ci ∗ TermCount(u)[i];

end;
end;

Figure 1: The Parallel Computation of φ.
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We give the algorithm to do the parallel computation of φ in Figure 1.
We make two remarks. First, write conflicts are possible in Step 2 of the algo-
rithm. Indeed, consider the addition of TermCount(u)[i] to TermCount(u′)[i]
by processor u. Suppose that processor u′ is associated with tree t′. Then
the number of possible increments of TermCount(u′)[i], if u′ is associated
with a tree with k + 1 nodes, is at most k. This is because one processor is
associated with each tree that arises by deleting one leaf from t′. A processor
associated with a tree with k nodes will access the element TermCount(u)[i]
of k other processors. Therefore a processor u will need to wait at most lm
cycles to access the entry TermCount(u′)[i], and will need to access at most
m such entries for each i.

Second, using Brent’s algorithms for the parallel computation of arith-
metic expressions [1], it is possible to compute ψ(t) in parallel. Let σ = φ(p)
and recall that the number of operations to compute ψ(σ) is O(m |σ|Nm)
by Proposition 7. Therefore, given sufficiently many processors, ψ(σ) can
be computed in time O(log2(m |σ|Nm)).

Proposition 9 The cost of computing φ(p) according to the algorithm in
Figure 1 is O(l2m3).

Proof: Step 0 and Step 3 take time O(l). Step 1 takes time O(l2). If
t ∈ LT k(E1, . . . , EM ) and u = ut, then the following estimate holds for
the inner loop of Step 2. The outer loop is repeated m times. The next
sequential loop is repeated l times. Since the length of ProcessorList is at
most m, the next sequential loop is repeated at most m times. By the first
remark above, each of the at most m iterations of this loop will need to wait
at most lm time units to execute. Therefore the total execution time for
Step 2 is bounded by O(l2m3). This completes the proof of the proposition.

Recall that by Proposition 6, φ(p) can be computed in serial timeO(lmm!).
Comparing this to the cost of the algorithm above gives

Theorem 10

Costserial φ-algorithm(p)
Costparallel φ-algorithm(p)

= O

(
lm2

m!

)
.
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