
Vector Fields and Nilpotent Lie Algebras

Matthew Grayson∗

University of California, San Diego

Robert Grossman†

University of California, Berkeley

July 5, 1988

This is a draft of the following publication: M. Grayson and
R. Grossman, Nilpotent Lie algebras and vector fields, Symbolic
Computation: Applications to Scientific Computing, R. Grossman,
editor, SIAM, Philadelphia, 1989, pages 77-96.

1 Introduction

This paper is concerned with the efficient symbolic computation of flows of
ordinary differential equations of the form

ẋ(t) = F (x(t)), x(0) ∈ RN .

In other words, we want to write the corresponding trajectory t → x(t)
in closed form. Of course, since this cannot be done for most differential
equations, it is important to find a means of approximating a general flow by
a flow which is explicitly integrable in closed form. In this paper we describe
an infinite dimensional family of explicitly integrable flows E; in a companion
paper [6] we give an algorithm which, given a general flow F , will, in some

∗The author is a National Science Foundation Postdoctoral Research Fellow.
†The author is a National Science Foundation Postdoctoral Research Fellow.

1

cases, find a flow E which is explicitly integrable in closed form and is close
to the original flow F . More generally, one could imagine approximating a
flow by a flow which is explicitly integrable in closed form, flowing for a time
step, finding a new approximating flow, and continuing.

The type of integrable flows discussed in this paper arise in a very simple
fashion. We describe the basic idea here and refer to the paper for the details.
We assume that the differential equation

ẋ(t) = E(x(t)), x(0) ∈ RN ,

has the form

ẋ1(t) = a1

ẋ2(t) = a2(x1)

ẋ3(t) = a3(x1, x2)
...

...

ẋN(t) = aN(x1, x2, . . . , xN−1)

for polynomials a1, . . . , aN . Since the first equation can be integrated in
closed form to yield x1 as a function of time, and the jth equation depends
only upon the first through (j − 1)th equations, the entire system can be
explicitly integrated in closed form.

In many examples, the vector field E defining the flow has some additional
structure so that it can be written as the sum of two or more pieces. For
example, suppose E depends upon two controls t → u1(t) and t → u2(t)
and can be written as E = u1(t)E1 + u2(t)E2. Alternatively, suppose that E
can be written as the sum of two pieces E1 + εE2, where ε is a parameter.
Observe that if E1 and E2 are vector fields with polynomial coefficients which
are homogeneous of degree 1, then the flow generated by E is of the form
above and, hence, is explicitly integrable in closed form. See §2 and [4] for
more details.

Section 2 provides some background on vector fields, flows and Lie al-
gebras. Section 3 gives an algorithm for producing flows associated with
free, nilpotent Lie algebras. Section 4 considers flows which are modeled by
nilpotent Lie algebras satisfying relations “at a point”. The appendix con-
tains a brief description of the MAPLE code which we used to construct the
examples.

2

Nilpotent approximations of this type have been used in control theory
by Crouch [1] and [2], Hermes [8], [9], and [10], and Krener [13]; and in
partial differential equations by Folland [3], Hörmander [11], Rockland [14],
and Stein [15].

2 Vector fields, Flows and Lie Algebras

In this section, we define homogeneous derivations and the flows they gen-
erate. One of the interests of homogeneous derivations is that their flows
are integrable explicitly in closed form. Homogeneous derivations may be
classified by the algebraic properties of the (Lie) algebras they generate. In
the next section, we give an algorithm which yields homogeneous derivations
which generate a Lie algebra of special type, called a free, nilpotent Lie al-
gebra. In section four, we describe the analogous algorithm for derivations
which satisfy relations “at a point.” For background and related material,
see Goodman [5], Jacobson [12], and Varadarajan [16].

Let R denote the space of polynomial functions on RN and let E1, . . . , EM

denote vector fields on RN with polynomial coefficients; that, is, Ei is of the
form

Ei =
N∑

j=1

aj
iDj,

where aj
i = aj

i (x1, . . . , xN) ∈ R are polynomials and Dj = ∂/∂xj. These are
also called derivations, since they are derivations of the ring of polynomials
R. Recall that a derivation E of a ring R is a map E : R −→ R satisfying
the identities

E(a + b) = E(a) + E(b)

E(ab) = aE(b) + bE(a),

for elements a and b ∈ R. The flow generated by the derivation E =∑N
j=1 ajDj, with initial point x0 = (x0

1, . . . , x0
N) ∈ RN is defined to be the

solution of the initial value problem

ẋ1(t) = a1(x1, . . . , xN)
...

ẋN(t) = aN(x1, . . . , xN),

3

x1(0) = x0
1, . . . , xN(0) = x0

N .

Let t → x(t) denote the solution to this initial value problem. We say
that the point x1 ∈ RN is reached in time s in case x1 = x(s). Notice that
flows form a semigroup; that, is, if we can flow from x0 ∈ RN to the point
x1, and from x1 to the point x2, then we can flow from x0 to the point x2.

We are interested in homogeneous derivations of weight m. We define
these informally; for a more formal definition, see [5]. First, assign weights
to the coordinate variables: say x1 is of weight ρ1, . . ., xN is of weight ρN .
Second, assign weights to monomials, by defining the weight of the monomial
to be

wt(xe1
1 · · ·xeN

N) = ρ1
e1 + · · ·+ ρN

eN .

Third, a polynomial is called homogeneous of weight m in case it is a sum
of monomials, each of weight m. Fourth, define the weight of the coordinate
derivation to be

wt(Dj) = ∂/∂xj = −ρj,

and the weight of the derivation a(x)Dj to be wt(a(x)) − wt(Dj). Fifth,
a general derivation Ei =

∑N
j=1 aj

iDj is of weight m in case it is the sum
of derivations, each of weight m. Sixth, the weight of the second order
differential operator is defined as

wt(a(x)DiDj) = wt(a(x))− wt(Di)− wt(Dj),

and the weight of higher order differential operators are defined in an analo-
gous fashion.

If E is a derivation of weight 1 on RN , then the flow

ẋ(t) = E(x(t)), (0) = x0 ∈ RN

is explicitly integrable in closed form. This is easy to prove by induction,
since the coefficient of ∂/∂xi, for example, depends only upon variables which
have already been computed.

Given M derivations E1, . . . , EM , we define the Lie algebra generated by
E1, . . . , EM to be the smallest real subspace of derivations of R which is
closed under the formation of Lie brackets

[E, F] = EF − FE;

4

this is denoted
g(E1, . . . , EM).

The length of a Lie bracket is defined inductively as follows: the generators
all have length 1. If E is a Lie bracket of length less than or equal to k and
F is a Lie bracket of length less than or equal to l, then [E, F] has length
less than or equal to k + l. The algorithms in this paper use the length of a
Lie bracket to define homogeneous derivations in the following way. A vector
space decomposition of RN = V1 ⊕ · · · ⊕ Vr is defined by setting

Vl = span {E : E is a Lie bracket of length ≤ l}.

If ej, . . . , ej′ is a basis of Vl, then each coordinate xj in the dual basis of
coordinates xj, . . . , xj′ is defined to have weight l, and homgenous derivations
are defined as above.

A Lie algebra is called nilpotent of step r in case any Lie bracket of length
greater than r is zero. Note that if E1, . . . , EM are homogeneous of weight
1, then the Lie algebra they generate is nilpotent of step r and any bracket
of length l is homogeneous of weight l. This is because if F1 is a derivation
homogeneous of weight k and F2 is a derivation homogeneous of weight l,
then [F1, F2] is homogeneous of weight k + l. A Lie algebra is free in case it
satisfies as few relations as possible. Note that a Lie algebra always satisfies
some relations, since for example

[E1, E2] = −[E2, E1]

and
[[E1, E2], E3] + [[E2, E3], E1] + [[E3, E1], E2] = 0.

Also, there will be additional relations that are a consequence of these. A
Lie algebra is free in case any relation is a consequence of relations that are
of the form above. Rather than try to make this precise, we give a basis for
a free, nilpotent Lie algebra that is due to M. Hall.

Definition 2.1 Each element of the Hall basis is a monomial in the genera-
tors and is defined recursively as follows. The generators E1, . . . , EM are ele-
ments of the basis and of length 1. If we have defined basis elements of lengths
1, . . . , r− 1, they are simply ordered so that E < F if length(E) < length(F).
Also if length(E) = s and length(F) = t and r = s + t, then [E, F] is a basis
element of length r if:

5

1. E and F are basis elements and E > F , and

2. if E = [G, H], then F ≥ H.

3 Free, Nilpotent Lie Algebras

In this section we provide motivation by reviewing an algorithm, whose input
consists of a rank r, and whose output consists of two vector fields E1 and E2

on RN which generate a Lie algebra which is isomorphic to the free, nilpotent
Lie algebra g2,r on two generators of rank r. Here N is the dimension of the
Lie algebra. The proof can be found in [4]. In the next section we consider
the analogous problem when the Lie algebra satisfies relations. Recall that
the flows of these vector fields can all be integrated explicitly in closed form.

Fix the rank r ≥ 1 of the free, nilpotent Lie algebra g2,r, and number the
basis elements for the Lie algebra by the ordering from Definition 2.1, i.e.,
E3 = [E2, E1], E4 = [E3, E1], E5 = [E3, E2], etc. Consider a basis element
Ek as a bracket in the lower order basis elements, [Ei1 , Ej1], where i1 > j1. If
we repeat this process with Ei1 , we get Ek = [[Ei2 , Ej2], Ej1], where j2 ≤ j1

by the Hall basis conditions. Continuing in this fashion, we get

Ek = [[· · · [[Eim , Ejm], Ejm−1], · · · , Ej2], Ej1],

where im = 2, jm = 1, and jn+1 ≤ jn for 1 ≤ n ≤ m − 1. This defines a
partial ordering of the basis elements. We say that Ek is a direct descendant
of each Eij , and we indicate this by writing k � ij.

Define monomials P2,k inductively by P2,k = −xjP2,i/(degjP2,i + 1),
whenever Ek = [Ei, Ej] is a Hall basis element, and where degjP is the
highest power of xj which divides P . If l � m, then define Pl,m to be the
quotient P2,m/P2,l. Note that Pi,i = 1. The coefficients of these monomi-
als guarantee that − ∂

∂xj
Pi,l = Pk,l whenever i ≺ k ≺ l. For example, if

Ek = [[[[[[[E2, E1], E1], E1], E2], E4], E4], E7], and if Ei = [[[E2, E1], E1], E1],
then

P2,k = −x3
1x2x

2
4x7

3!2!
, and Pi,k =

x2x
2
4x7

2!
.

The following theorem summarizes the properties of the generators.

6

Theorem 3.1 Fix r ≥ 1 and let N denote the dimension of the free, nilpo-
tent Lie algebra on 2 generators of rank r. Then the vector fields

E1 =
∂

∂x1

E2 =
∂

∂x2

+
∑
i�2

P2,i
∂

∂xi

have the following properties:

1. they are homogeneous of weight one with respect to the grading

RN = V1 ⊕ · · · ⊕ Vr,

where Vi = the span of Hall basis elements of length i.

2. the Hall basis elements Ek they generate satisfy Ek(0) = ∂
∂xk

;

3. the flow E1 + E2 is explicitly integrable in closed form;

4. the Lie algebra they generate is isomorphic to g2,r.

4 Vector Field Models With Relations at the

Origin

In the previous section, we gave an algorithm which generates the explicitly
integrable flows associated with free, nilpotent Lie algebras. Our eventual
goal is to find as large a class as possible of explicitly integrable flows. In
this section, we generalize the algorithm of the previous section by giving
an algorithm which generates the explicitly integrable flows associated with
nilpotent Lie algebras satisfying “relations at a point.”

Let E1, . . . , EN denote the basis of the free, nilpotent Lie algebra on two
generators E1 and E2 of rank r and dimension N , and let E1, . . . , EN denote
the vector fields obtained by replacing each occurrence of the generators E1

and E2 in Ei by E1 and E2. Recall that a homogeneous relation is a relation
of the form

Ei =
N∑

j=1

r̃ijEj,

7

where r̃ij = 0, unless wt(Ei) = wt(Ej), and r̃ij are scalars. We are interested
in quotient algebras g defined by imposing homogeneous relations among
the generators. Our eventual goal is to find a vector field model for an
arbitrary quotient algebra g; that is, vector fields E1, . . . , EN corresponding
to the Lie elements E1, . . . EN and satisfying the same bracket relations as the
quotient algebra. The reason is simple: many questions about the structure
of the algebra and about the associated dynamical system ẋ(t) = E1(x(t)) +
E2(x(t)) are reduced to easily computed questions about the flows of the
Ej’s.

In this paper, we solve just a “local” version of this problem. To de-
scribe this problem, we fix the basis E1, . . . , EN in the domain, and the basis
D1, . . . , DN in the range, and use the homogeneous relations to induce a map
R : RN → RN . The problem we solve is to find vector fields E1 and E2 such
that the associated Lie brackets evaluated at the origin E1(0), . . . , EN(0) are
the columns of the matrix R. We prove the theorem assuming the following
technical hypothesis.

Assumption. The map R is the identity when restricted to the subspace
spanned by the derivations Ei of weight less than or equal to r/2. In other
words, the components rij of R satisfy rij = δij, whenever the weights of Ei

and Ej are both less than r/2. Here δij is the Kronecker delta.
Since the number of basis elements grows very quickly with the weight,

this requirement affects very few of them. This restriction reduces the ar-
guments essentially to the proof of the free case; under this condition, the
images of the free nilpotent Lie algebra vector fields E1 and E2 under the
map R generate the desired quotient algebra with relations at the origin.
Indeed, the same map R takes the basis elements for the free nilpotent Lie
algebra to a spanning set for the quotient algebra. Of course, in general, the
operations of bracket and non-isomorphic linear mapping do not commute.
With the above condition, it follows that they at least commute at the origin.

We conclude this introduction with a simple remark. Let B denote the
indices in the index set {1, . . . , N} which are of weight less than r/2; and
let A denote the remaining indices. Also, let R̃ = (r̃ij) denote the matrix
defining the homogeneous relations satisfied by the generators Ei, and assume
that

1. r̃ij = δij, for i, j ∈ B

2. for each fixed i ∈ A, rij = 0, for all j ∈ A and j 6= i.

8

It is easy to see that, with these hypotheses, the matrix of relations R̃ is
equal to the matrix R defined above using the bases Ei and Dj.

Define polynomials P2,k inductively by P2,k = −xjP2,i/(degjP2,i + 1),
whenever Ek = [Ei, Ej] is a Hall basis element, and where degjP is the
highest power of xj which divides P . If l � m, then define Pl,m to be the
quotient P2,m/P2,l. Note that Pi,i = 1.

Theorem 4.1 Choose R = (rij) satisfying the assumption above, and set

E1 =
∂

∂x1

and

E2 =
∑
i≥2

P2,i

N∑
j=1

rji
∂

∂xj

.

Then the Lie brackets Ej have the properties:

1. they are homogeneous of weight 1 with respect to the grading

RN = V1 ⊕ · · · ⊕ Vr,

where Vi = the span of Hall basis elements of length i;

2. the flows of the system

ẋ(t) = E1(x(t)) + E2(x(t)), x(0) = x0

are explicitly integrable in closed form;

3. at the origin, the vector fields satisfy

Ei(0) =
N∑

j=1

rji
∂

∂xj

,

for all 1 ≤ i ≤ N , and so they satisfy the desired relations.

Proof of theorem. By construction the vector fields are homogeneous of
weight 1; therefore their flows are explicitly integrable in closed form; hence,
we need only prove assertion three. As in the proof of the free case, this
is proved using a lemma which is actually stronger than the theorem and
which illuminates the structure of the vector fields Ej. We must introduce
the minimum order of a polynomial which was defined in [4].

9

Definition 4.2 Let A be any non-constant monomial in the variables x1,
. . . , xn. Define the minimum order of A by m(A) = min{j : xj|A}. If A is
a polynomial with no constant term, then define m(A) to be the maximum of
the minimum orders of the monomials of A.

Lemma 4.3 If Ek = [Ei, Ej], then

Ek =
∑
l�k

Pk,l

∑
m

rml
∂

∂xm

+
∑
n

Qk,n
∂

∂xn

,

where j ≤ m(Pk,l) < k, and Qk,n is a polynomial with no constant term with
minimum order < j.

Assertion three follows easily from the lemma. The only coefficients which
do not vanish at the origin are from the first term when l = k. This implies
Ek(0) =

∑N
m=1 rmk

∂
∂xm

, as desired.
Proof of lemma. The proof is by induction. Direct computation yields

E3 =
∑
i≥3

P3,i

∑
j

rji
∂

∂xj

,

since P2,i = −x1P3,i for all i ≥ 3.
Consider the parents of Ek. By the inductive hypothesis:

Ei =
∑
a�i

Pi,a

∑
b

rba
∂

∂xb

+
∑

c

Qi,c
∂

∂xc

,

and

Ej =
∂

∂xj

+
∑
d�j

Pj,d

∑
e

rde
∂

∂xe

+
∑
f

Qj,f
∂

∂xf

,

since the weight of Ej < ρ/2, and so Ej(0) = ∂
∂xj

.

Now Ei = [Ep, Eq] and so q ≤ j by the basis condition. Therefore, we
have the relations:

q ≤ m(Pi,a) < i and m(Qi,c) < q ≤ j.

And trivially,
m(Pj,d) < j and m(Qj,f) < j.

10

Examine the terms in the bracket of Ei and Ej.

[Ei, Ej] =
∑
a�i
d�j

∑
b
e

Pi,arbared(
∂

∂xb

Pj,d)
∂

∂xe

+
∑
a�i

∑
b
f

Pi,arba(
∂

∂xb

Qj,f)
∂

∂xf

+
∑

c
d�j

∑
e

Qi,cred(
∂

∂xc

Pj,d)
∂

∂xe

+
∑

c

∑
f

Qi,c(
∂

∂xc

Qj,f)
∂

∂xf

−
∑
a�i

∑
b

rba(
∂

∂xj

Pi,a)
∂

∂xb

−
∑

c

(
∂

∂xj

Qi,c)
∂

∂xc

−
∑
d�j
a�i

∑
e
b

Pj,dredrba(
∂

∂xe

Pi,a)
∂

∂xb

−
∑
d�j

∑
e
c

Pj,dred(
∂

∂xe

Qi,c)
∂

∂xc

−
∑

f
a�i

∑
b

Qj,frba(
∂

∂xf

Pi,a)
∂

∂xb

−
∑
f

∑
c

Qj,f (
∂

∂xf

Qi,c)
∂

∂xc

.

If A and B are any monomials with m(A) < j then for any m, A ∂
∂xm

B either
vanishes or has minimum order less than j. This, and the fact that rij = 0
unless Ei and Ej have the same weight, imply that the non-zero terms in
the second, fifth, and sixth lines have minimum orders < j. If A is any
monomial satisfying m(A) < j and if m ≥ j, then ∂

∂xm
A either vanishes or

has minimum order less than j. This implies that the non-zero terms in the
first and fourth lines have minimum orders < j. The remaining terms are

−
∑
a�i

∑
b

rba(
∂

∂xj

Pi,a)
∂

∂xb

.

When a = i, this term vanishes. If m(Pi,a) = j, then either k = a, in which
case

−
∑

b

rbk(
∂

∂xj

Pi,k)
∂

∂xb

=
∑

b

rbk
∂

∂xb

,

or a � k, and

−
∑

b

rba(
∂

∂xj

Pi,a)
∂

∂xb

=
∑

b

rbaPk,a
∂

∂xb

.

11

If m(Pi,a) < j, then ∂
∂xj

Pi,a is either zero, or it has minimum order less

than j. If m(Pi,a) > j, then ∂
∂xj

Pi,a = 0. We conclude that

−
∑
a�i

∑
b

rba(
∂

∂xj

Pi,a)
∂

∂xb

=
∑
l�k

∑
m

rmlPk,l
∂

∂xl

+
∑
g

Qk,g
∂

∂xg

,

where m(Qk,g) < j. This proves the lemma. (4.3)

5 Appendix: Maple Code

The algorithms described in this paper were the result of computer exper-
imentation using the symbolic packages MACSYMA and MAPLE. In this
appendix, we give examples of some of the very simple MAPLE code that we
wrote. The first example gives the MAPLE code to compute Lie brackets;
the second example gives the MAPLE code to compute vector fields which
satisfy relations at a point, and illustrates the code by computing two vector
fields which satisfy the relation

E6(0) + 2E7(0) = E8(0).

Finally we give the code which will flow along vector fields, and illustrate it
by flowing along the sum of the two vector fields already computed.

brac:= proc(v,w)

#returns the Lie bracket of the vector fields v and w

local temp,t,i,j,l;

if not type(v,‘vector‘) then

ERROR(‘Not a vector‘)

elif not type(w,‘vector‘) then

ERROR(‘Not a vector‘)

fi;

if vectdim(v)<>vectdim(w) then

ERROR(‘Different dimensions!‘)

fi;

temp:=array(1..vectdim(v));

12

t:=array(1..vectdim(v));

for j from 1 to vectdim(v) do

for i from 1 to vectdim(v) do

t[i]:= v[i]*diff(w[j],x[i])-w[i]*diff(v[j],x[i])

od;

temp[j] := sum(t[l],l=1..vectdim(v));

od;

eval(temp);

end;

The next example is the procedure which generates two vector fields sat-
isfying relations at the origin.

HallRelations := proc(rho,maxdim)

#rho is the maximum weight, maxdim is an upper bound for the dimension

local left,right,i,j,a,b,w,w0,wptr,k,poly;

left:= array(1..maxdim,sparse,[(3)=2]);

right:= array(1..maxdim,[(3)=1]);

poly:= array(1..maxdim,1..maxdim,sparse,[(3,1)=1]);

w:=array(1..maxdim,sparse,[(1)=1,(2)=1,(3)=2]);

wptr:=array(1..rho+1,sparse,[(1)=1,(2)=3,(3)=4]);

#wptr(i) is the index of the first element of weight i.

l:= 4:

print(e.3=[e.2,e.1]);

for w0 from 3 to rho do

#w0 is the weight of the produced brackets

for i from round(w0/2) to (w0-1) do

#i is the weight of the left parent

for j from wptr[i] to (wptr[i+1]-1) do

#j is the index of the left parent

for k from wptr[w0-i] to (wptr[w0-i+1]-1) do

#k is the index of the right parent

if k < right[j] then next fi;

#These are the Hall Conditions

13

if j <= k then break fi;

left[l]:= j;

#assign the left and right parents

right[l]:= k;

#to the new bracket.

print(e.l=[e.j,e.k]);

w[l] := w[j]+w[k];

#This is its weight.

for m from 1 to k-1 do

#This loop assigns the multiindex for the coefficient.

poly[l,m]:= poly[j,m] od;

poly[l,k]:= poly[j,k]+1;

l:= eval(l+1);

od;

od;

od;

wptr[w0+1]:= l;

od;

e1:=array(1..wptr[rho+1]-1,sparse,[(1)=1]):

e2:=array(1..wptr[rho+1]-1,sparse,[(2)=1]);

for i from 2 to rho do

#Sum over the weights

for j from wptr[i] to wptr[i+1]-1 do

#Sum over elements of the same weight

for q from wptr[i] to wptr[i+1]-1 do

e2[j]:= eval(e2[j])+

(product((-x[p])^poly[q,p]/(poly[q,p]!), p=1..right[q])*r[j,q])

od;

od;

od;

print(e1=eval(e1));

print(e2=eval(e2));

for i from 3 to wptr[rho+1]-1 do

a:= left[i]:

b:=right[i]:

e.i:= brac(e.a,e.b);

print(e.i=eval("));

14

od;

end;

We conclude this section by consider a quotient algebra of g2,4. This
has a basis given by E1, E2 (the generators), E3 = [E2, E1], E4 = [E3, E1],
E5 = [E3, E2], E6 = [E4, E1], E7 = [E4, E2], and E8 = [E5, E1]. We impose
the relation that

E7(0) + 2E8(0) = E6(0).

The r matrix is below, followed by the two vector fields and their brackets.

r := array (1 .. 8, 1 .. 8,

[1, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 1, 0]

[0, 0, 0, 0, 0, 2, 0, 1]

)

>

HallRelations(4,8);

e3 = [e2, e1]

e4 = [e3, e1]

15

e5 = [e3, e2]

e6 = [e4, e1]

e7 = [e4, e2]

e8 = [e5, e2]

e1 = (array (sparse, 1 .. 8, [1, 0, 0, 0, 0, 0, 0, 0]))

e2 = (array (sparse, 1 .. 8,

2 3 2

[0, 1, - x[1], 1/2 x[1] , x[1] x[2], 0, - 1/6 x[1] - 1/2 x[1] x[2],

3 2

- 1/3 x[1] - 1/2 x[1] x[2]]))

e3 = (array (1 .. 8,

2 2 2

[0, 0, 1, - x[1], - x[2], 0, 1/2 x[1] + x[1] x[2], x[1] + 1/2 x[2]]))

e4 = (array (1 .. 8,

[0, 0, 0, 1, 0, 0, - x[1] - x[2], - 2 x[1]]))

e5 = (array (1 .. 8, [0, 0, 0, 0, 1, 0, - x[1], - x[2]]))

e6 = (array (1 .. 8, [0, 0, 0, 0, 0, 0, 1, 2]))

e7 = (array (1 .. 8, [0, 0, 0, 0, 0, 0, 1, 0]))

e8 = (array (1 .. 8, [0, 0, 0, 0, 0, 0, 0, 1]))

We now flow along the vector field E1 + E2 using the following function.

flow:=proc(v,p0)

#flows returns the point reached after flowing for time tau

16

#along the vector field v from the point p0

local xt,r,x1,i,j,n;

n := vectdim(v);

xt := array(1..n);

x1 := array(1..n);

r := array(1..n);

r[1]:=v[1];

for i from 1 to n-1 do

xt[i] := int(r[i],t)+p0[i];

r[i+1]:= subs((x[j]=xt[j]) $ j=1..i,v[i+1]);

od;

xt[n] := int(r[n],t)+p0[n];

for i from 1 to n do

x1[i] := subs(t=tau,xt[i])

od;

eval(x1);

end;

The result of flowing along the E1 + E2 for time τ is first displayed, followed
by the point reached after flowing for time one.

>

flow(add(e1,e2),array(1..8,sparse));

array (1 .. 8,

[tau, tau, - 1/2 tau , 1/6 tau , 1/3 tau , 0, - 1/6 tau , - 5/24 tau])

>

subs(tau=1,");

array (1 .. 8, [1, 1, -1/2, 1/6, 1/3, 0, -1/6, -5/24])

17

References

[1] P. E. Crouch, Dynamical realizations of finite Volterra series, SIAM J.
Control Optim., 19 (1981), 177–202.

[2] P. E. Crouch Graded vector spaces and applications to the approxima-
tions of nonlinear systems, to appear.

[3] G. B. Folland and E. M. Stein, Estimates for the ∂̄b complex and analysis
of the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522.

[4] M. Grayson and R. Grossman, Models for free, nilpotent lie algebras,
Center for Pure and Applied Mathematics, University of California,
Berkeley, PAM 397.

[5] R. W. Goodman, “Nilpotent Lie Groups: Structure and Applications to
Analysis,” Springer-Verlag, New York, 1976, Lecture Notes in Mathe-
matics, No. 562.

[6] R. Grossman and R. G. Larson, Solving nonlinear equations from higher
order derivations in linear stages, Center for Pure and Applied Mathe-
matics, University of California, Berkeley, PAM 396.

[7] M. Hall, A basis for free Lie rings and higher commutators in free groups,
Proc. Amer. Math. Soc., 1 (1950), 575–581.

[8] H. Hermes, Control systems which generate decomposible Lie algebras,
J. Diff. Eqns., 44 (1982), 166–187.

[9] H. Hermes, Nilpotent approximations of control systems and distribu-
tions, SIAM J. Control Optim., 24 (1986), 731–736.

[10] H. Hermes, A. Lundell, and D. Sullivan, Nilpotent bases for distributions
and control systems, J. Diff. Equations, 55 (1984), 385–400.

[11] L. Hörmander, Hypoelliptic second order differential equations, Acta.
Math., 119 (1968), 147–171.

[12] N. Jacobson, “Lie Algebras,” John Wiley and Sons, New York, 1962.

18

[13] A. Krener, Bilinear and nonlinear realizations of input-output maps,
SIAM J. Control Optim., 13 (1975), 827–834.

[14] C. Rockland, Intrinsic nilpotent approximation, Acta Applicandae
Math. 8 (1987), 213-270.

[15] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and
nilpotent groups, Acta. Math., 37 (1977), 248–315.

[16] V. S. Varadarajan, “Lie Groups, Lie Algebras, and their Representa-
tions,” Prentice-Hall, Inc., Englewood Cliffs, 1974.

19

