
1

UDT: UDP-based Data Transfer
for High-Speed Wide Area Networks

Yunhong Gu and Robert L. Grossman

National Center for Data Mining, University of Illinois at Chicago
851 S Morgan St, M/C 249, Chicago, IL 60607, USA

gu@lac.uic.edu, grossman@uic.edu

Abstract

In this paper, we summarize our work on the UDT high performance data transport protocol over the past four years. UDT was designed
to effectively utilize the rapidly emerging high-speed wide area optical networks. It is built on top of UDP with reliability control and
congestion control, which makes it quite easy to install. The congestion control algorithm is the major internal functionality to enable
UDT to effectively utilize high bandwidth. Meanwhile, we also implemented a set of APIs to support easy application implementation,
including both reliable data streaming and partial reliable messaging. The original UDT library has also been extended to Composable
UDT, which can support various congestion control algorithms. We will describe in detail the design and implementation of UDT, the
UDT congestion control algorithm, Composable UDT, and the performance evaluation.

Keywords: Transport Protocol, Congestion Control, High Speed Networks, Design and Implementation

1. INTRODUCTION
The rapid increase of network bandwidth and the emergence of
new distributed applications are the two driving forces for
networking research and development. On the one hand, network
bandwidth today has been expanded to 10Gb/s with 100Gb/s
emerging, which enables many data intensive applications that
were impossible in the past. On the other hand, new applications,
such as scientific data distribution, expedite the deployment of
high-speed wide-area networks.
Today, national or international high-speed networks have
connected most developed regions in the world with fiber [13,
17]. Data can be moved at up to 10 Gb/s among these networks
and often at a higher speed inside the networks themselves. For
example, in the United States, there are national multi-10Gb/s
networks, such as National Lambda Rail, Internet2/Abilene,
Teragrid, ESNet, etc. They can connect to many international
networks such as CA*Net 4 of Canada, SurfNet of the
Netherlands, and JGN2 of Japan.
Meanwhile, we are living in a world of exponentially increasing

data. The old way of storing data in disk or tape storage and
delivering them manually by transport vehicles is no longer
efficient. In many situations, the old fashioned method of
shipping disks with data on them makes it impossible to meet the
applications' requirements (e.g., online data analysis and
processing).
Researchers in high-energy physics, astronomy, earth science, and
other high performance computing areas have started to use these
high-speed wide area optical networks to transfer terabytes of
data. We expect that home Internet users will also be able to make
use of the high-speed networks in the near future for applications
with high-resolution streaming video, for example. In fact, an
experiment between two ISPs in the USA and Korea has
demonstrated an effective 80Mb/s data transfer speed.
Unfortunately, high-speed networks have not been efficiently
used by applications with large amounts of data. The
Transmission Control Protocol (TCP), the de facto transport
protocol of the Internet, substantially underutilizes network
bandwidth over high-speed connections with long delays [13, 22,
39, 70]. For example, a single TCP flow with default parameter
settings on Linux 2.4 can only reach about 5 Mb/s over a 1Gb/s
link between Chicago and Amsterdam; with careful parameter
tuning the throughput still only reaches about 70Mb/s. A new
transport protocol is required to address this challenge. The new
protocol is expected to be easily deployed and easily integrated
with the applications, in addition to utilizing the bandwidth
efficiently and fairly.

This paper is partly based upon five conference papers published on the
proceedings of PFLDNet workshop 2003 and 2004, IEEE GridNets
workshop 2004, and IEEE/ACM SC conference 2004 and 2005. See
reference [26, 27, 28. 29, 30].

2

Network researchers have proposed quite a few solutions to this
problem, most of which are new TCP congestion control
algorithms [8, 23, 25, 37, 40, 53, 55, 67] and application-level
libraries using UDP [18, 26, 61, 65, 66, 71]. Parallel TCP [1, 56]
and XCP [39] are two special cases: the former tries to start
multiple concurrent TCP flows to obtain more bandwidth,
whereas the latter represents a radical change by introducing a
new transport layer protocol involving changes in routers.
In UDT we have a unique approach to address the problem of
transferring large volumetric datasets over high bandwidth-delay
product (BDP) networks. While UDT is a UDP-based approach,
to the best of our knowledge, it is the only UDP-based protocol
that employs a congestion control algorithm targeting shared
networks. Furthermore, UDT is not only a new control algorithm,
but also a new application level protocol with support for user
configurable control algorithms and more powerful APIs.
This paper summarizes our work on UDT over the past four years.
Section 2 gives an overview of the UDT protocol and describes its
design and implementation. Section 3 explains its congestion
control algorithm. Section 4 introduces Composable UDT that
supports configurability of congestion control algorithms. Section
5 gives an experimental evaluation of the UDT performance.
Section 6 concludes the paper.

2. THE UDT PROTOCOL
2.1 Overview
UDT adapts itself into the layered network protocol architecture
(Figure 1). UDT uses UDP through the socket interface provided
by operating systems. Meanwhile, it provides a UDT socket
interface to applications. Applications can call the UDT socket
API in the same way they call the system socket API. An
application can also provide a congestion control class instance
(CC in Figure 1) for UDT to process the control events, thus a
customized congestion control scheme will be used, otherwise the
default congestion control algorithm of UDT will be used.

UDP

OS Socket Interface

UDT

UDT Socket

Application CC

Figure 1: UDT in the Layer Architecture. UDT is in the
application layer above UDP. The application exchanges its data
through UDT socket, which then uses UDP socket to send or
receive the data. Memory copy is bypassed between UDT socket
and UDP socket, in order to reduce processing time. The
application can also provide a customized control scheme (CC).

UDT addresses two orthogonal research problems: 1) the design
and implementation of a transport protocol with respect to
functionality and efficiency, and 2) an Internet congestion control
algorithm with respect to efficiency, fairness, and stability.
In this section, we will describe the design and implementation of
the UDT protocol (Problem 1). The congestion control algorithm
and the Composable UDT (Problem 2) will be introduced in
Section 3 and Section 4, respectively.

2.2 Protocol Design
UDT is a connection-oriented duplex protocol. It supports both
reliable data streaming and partial reliable messaging.
Figure 2 describes the relationship between the UDT sender and
the receiver. In Figure 2, the UDT entity A sends application data
to the UDT entity B. The data is sent from A’s sender to B’s
receiver, whereas the control flow is exchanged between the two
receivers.

Figure 2: Relationship between UDT sender and receiver. All
UDT entities have the same architectures, each having both a
sender and a receiver. This figure demonstrates the situation
when a UDT entity A sends data to another UDT entity B. Data is
transferred from A’s sender to B’s receiver, whereas control
information is exchanged between the two receivers.

The receiver is also responsible for triggering and processing all
control events, including congestion control and reliability
control, and their related mechanisms as well.
UDT uses rate-based congestion control (rate control) and
window-based flow control to regulate the outgoing data traffic.
Rate control updates the packet-sending period every constant
interval, whereas flow control updates the flow window size each
time an acknowledgment packet is received.

2.2.1 Packet Structures
There are two kinds of packets in UDT: the data packets and the
control packets. They are distinguished by the 1st bit (flag bit) of
the packet header.
A UDT data packet contains a packet-based sequence number, a
message sequence number, and a relative timestamp (which starts
counting once the connection is set up, in microseconds) (Figure
3), in addition to the UDP header information.
Note that UDT’s packet-based sequencing with the packet size
information provided by UDP is equivalent to TCP’s byte-based
sequencing and can also support data streaming. Meanwhile, the
message sequence number is only used for messaging services.
The message number field indicates which packets consist of a
particular application message. A message may contain one or
more packets. The "FF" filed indicates the message boundary:
first packet – 10, last packet – 01, and solo packet – 11. The "O"
field indicates if this message should be delivered in order. In-

3

order delivery means that the message cannot be delivered until
all messages prior to it are either delivered or dropped.

0 Sequence Number

FF O Message Number

Time Stamp

0 1 2 3 31

Data Packet

1 Type Extended Type

ACK Sub-Sequence NumberX

Time Stamp

Control Information

Control Packet

0 1 3115

Figure 3: UDT packet header structures. The first bit of the
packet header is a flag to indicate if this is a data packet (0) or a
control packet (1). Data packets contain a 31-bit sequence
number, a 29-bit message number, and a 32-bit timestamp. In the
control packet header, bit 1- 15 is the packet type information and
bit 16 –31 can be used for user-defined types. The detailed
control information depends on the packet type.

There are 7 types of control packets in UDT and the type
information is put in bit field 1 - 15 of the packet header. The
contents of the following fields depend on the packet type. The
first three 32-bit fields must exist in the packet header, whereas
there may be an empty control information field, depending on
the packet type.
Specifically, UDT uses sub-sequencing for ACK packets. Each
ACK packet is assigned a unique increasing 31-bit sequence
number, which is independent of the data packet sequence
number.
The 7 types of control packets are: handshake (connection setup
information), ACK (acknowledgment), ACK2 (acknowledgment
of acknowledgment), NAK (negative acknowledgment, or loss
report), keep-alive, shutdown, and message drop request.
The extended type field is reserved for users to define their own
control packets in the Composable UDT framework (Section 4).

2.2.2 Connection Setup and Teardown
UDT supports two kinds of connection setup, traditional
client/server mode and rendezvous mode.
In the client/server mode, one UDT entity starts first as the server,
and its peer side (the client) that wants to connect to it will send a
handshake packet first. The client should keep on sending the
handshake packet every constant interval (the implementation
should decide this interval according to the balance between
response time and system overhead) until it receives a response
handshake from the server or a time-out timer expires.
The handshake packet has the following information: 1) UDT
version, 2) socket type (SOCK_STREAM or SOCK_DGRAM),

3) initial random sequence number, 4) maximum packet size, and
5) maximum flow window size.
The server, when receiving a handshake packet, checks its version
and socket type. If the request has the same version and type, it
compares the packet size with its own value and sets its own
value as the smaller one. The result value is also sent back to the
client by a response handshake packet, together with the server's
initial sequence number and maximum flow window size. The
server is ready for sending/receiving data right after this step.
However, it must send back a response packet as long as it
receives any further handshakes from the same client, in case the
client does not receive the previous response.
The client can start sending/receiving data once it gets a response
handshake packet from the server. Further response handshake
messages, if any are received, should be omitted.
A traditional client/server setup process requires that a server be
started first and then a client side to it. However, this mechanism
does not work if both of the machines are behind firewalls, when
the connection setup request from the client side will be dropped.
In order to support convenient connection setup in this situation,
UDT provides the rendezvous connection setup mode, in which
there is no server or client, and two users can connect to each
other directly.
Inside the UDT implementation of the rendezvous connection
setup, each UDT socket sends a connection request to its peer
side, and whoever receives the request will then send back a
response and set up the connection.
If one of the connected UDT entities is being closed, it will send a
shutdown message to the peer side. The peer side, after receiving
this message, will also be closed. This shutdown message,
delivered using UDP, is only sent once and not guaranteed to be
received. If the message is not received, the peer side will be
closed by a timeout mechanism (through the keep-alive packets).
Keep-alive packets are generated periodically if there is no other
data or control packets sent to the peer side. A UDT entity can
detect a broken connection if it does not receive any packets in a
certain predetermined time.

2.2.3 Reliability Control / Acknowledging
Acknowledgment is used in UDT for congestion control and data
reliability. In high-speed networks, generating and processing
acknowledgments for every received packet may take a
substantial amount of time. Meanwhile, acknowledgment itself
also consumes some bandwidth. (This problem is more serious if
the gateway queues use packets rather than bytes as the minimum
processing unit, which is very common today.)
UDT uses timer-based selective acknowledgment, which
generates an acknowledgment at a fixed interval, if there are new
continuously received data packets. This means that the faster the
transfer speed, the smaller the ratio of bandwidth consumed by
control traffic. Meanwhile, at very low bandwidth, UDT acts like
protocols that acknowledge every data packet.
UDT uses ACK sub-sequencing to avoid sending repeated ACKs
as well as to calculate RTT. An ACK2 packet is generated each
time an ACK is received. When the receiver side gets this ACK2,
it learns that the related ACK has reached its destination and only
a larger ACK will be sent later. Furthermore, the UDT receiver

4

can also use the departure time of the ACK and the arrival time of
the ACK2 to calculate RTT.
Note that it is not necessary to generate an ACK2 for every ACK
packet. Furthermore, an implementation can generates more light
ACKs to help synchronize the packet sending (self-clocking) but
these light ACKs will not change the protocol buffer status in
order to reduce the processing time.
The ACK interval of UDT is 0.01 seconds, which means that a
UDT receiver will generate 1 acknowledgment per 833 1500-byte
packets at 1 Gb/s data transfer speed.
To support this scheme, negative acknowledgment (NAK) is used
to explicitly feed back packet loss. NAK is generated once a loss
is detected so that the sender can react to congestion as quickly as
possible. The loss information (sequence numbers of lost packets)
will be resent after an increasing interval if there are timeouts
indicating that the retransmission or NAK itself has been lost. By
informing the sender of explicit loss information, UDT provides a
similar mechanism to TCP SACK, but the NAK packet can bring
more information than the TCP SACK field.
In partial reliability messaging mode, the sender assigns each
outbound message a timestamp. If the TTL of a message expires
by the time a packet of this message is to be sent or retransmitted,
the sender will send a message drop request to the receiver. The
receiver, upon receiving the drop request, will regard all packets
in the message as having been received and mark that message as
dropped.

2.3 Implementation
Figure 4 depicts the UDT software architecture. The UDT layer
has five function components: the API module, the sender, the
receiver, the listener, and the UDP channel, as well as four data
components: sender’s protocol buffer, receiver’s protocol buffer,
sender’s loss list, and receiver’s loss list.
Because UDT is bi-directional, all UDT entities have the same
structure. The sender and receiver in Figure 4 have the same
relationship as that in Figure 2.
The API module is responsible for interacting with applications.
The data to be sent is passed to the sender's buffer and sent out by
the sender into the UDP channel. At the other side of the
connection (not shown in this figure but it has the same
architecture), the receiver reads data from the UDP channel into
the receiver's buffer, reorders the data, and checks packet losses.
Applications can read the received data from the receiver's buffer.
The receiver also processes received control information. It will
update the sender's loss list (when NAK is received) and the
receiver's loss list (when loss is detected). Certain control events
will trigger the receiver to update the congestion control module,
which is in charge of the sender’s packet sending.
The UDT socket options are passed to the sender/receiver
(synchronization mode), the buffer management modules (buffer
size), the UDP channel (UDP socket option), the listener
(backlog), and CC (the congestion control algorithm, which is
only used in Composable UDT). Options can also be read from
these modules and provided to applications by the API module.
Many implementation issues arise during the development of
UDT. Most of them can be applied to general protocol
implementation. The details can be found in [28].

Figure 4: Software Architecture of the UDT implementation.
The solid line represents the data flow, and the dashed line
represents the control flow. The shading blocks (buffers and loss
lists) are the four data components, whereas the blank blocks
(API, UDP channel, sender, receiver, and listener) are function
components.

2.4 Application Programming Interface
The API (application programming interface) is an important
consideration when implementing a transport protocol. Generally,
it is a good practice to comply with the BSD socket semantics.
However, due to the special requirements and use scenarios in
high performance applications, additional modifications to the
original socket API are necessary.

File transfer API. In the past several years, network
programmers have welcomed the new sendfile method [38]. It is
also an important method in data intensive applications, as these
are often involved with disk-network IO. In addition to sendfile, a
new recvfile method is also added, to receive data directly onto
disk. The sendfile/recvfile interfaces and send/recv interfaces are
orthogonal.

Overlapped IO. UDT also implements overlapped IO at both the
sender and the receiver sides. Related functions and parameters
are added into the API. Overlapped IO is an effective method to
reduce memory copies [28].

Messaging with partial reliability. Streaming data transfer does
not cover requirements from all applications. There are
applications that are more concerned with the delay of message
delivery than the reliability of delivery. Such requirements have
been addressed in other protocols such as SCTP [58]. UDT
provides a high performance version of data messaging with
partial reliability.
When a UDT socket is created as SOCK_STREAM socket, the
data streaming mode is used; when it is created as a
SOCK_DGRAM socket, the data messaging mode is used. For
each single message, an application can specify two parameters:
the time-to-live (TTL) value and a boolean flag to indicate
whether the message should be delivered in order. Once the TTL
expires, a message will be removed from the sending queue even
if the sending is not finished. A negative TTL value means that
the message will be guaranteed for reliable delivery.

5

Rendezvous Connection Setup. UDT provides a convenient
rendezvous connection setup to traverse firewalls. In rendezvous
setup, both peers connect to each other's known port at the same
time.
An application can make use of the UDT library in three ways.
The library provides a set of C++ API that is very similar to the
system socket API. Network programmers can learn it easily and
use it like TCP sockets.
When used in applications written by languages other than
C/C++, an API wrapper can be used. So far, both Java and Python
UDT API wrappers have been developed.
Certain applications have a data transport middleware to make use
of multiple transport protocols. In this situation, a new UDT
driver can be added to this middleware, and then used by the
applications transparently. For example, a UDT XIO driver has
been developed so that the library can be used in Globus
applications seamlessly.

3. CONGESTION CONTROL

3.1 The DAIMD and UDT Algorithm
We consider a general class of the following AIMD (additive
increase multiplicative decrease) rate control algorithm:
For every rate control interval, if there is no negative feedback
from the receiver (loss, increasing delay, etc.), but there are
positive feedbacks (acknowledgments), then the packet-sending
rate (x) is increased by α(x).

)(xxx α+← (1)

α(x) is non-increasing and it approaches 0 as x increases, i.e.,
0)(lim =+∞>− xx α .

For any negative feedback, the sending rate is decreased by a
constant factor β (0 < β <1):

xx ⋅−←)1(β (2)

Note that formula (1) is based on a fixed control interval, e.g., the
network round trip time (RTT). This is different from TCP
control, in which every acknowledgment triggers an increase.

By varying α(x), we can get a class of rate control algorithm that
we name the DAIMD algorithm (AIMD with decreasing
increases), because the additive parameter is decreasing. Using
the strategies of [57], we can show that this approach is globally
asynchronously stable and will converge to fairness equilibrium.
Detailed proof can be found in [27].

In addition to stability and fairness, the function of α(x) has to be
large around α(0) to be efficient and it has to decrease quickly to
reduce oscillations.

UDT adopts this efficiency idea and specifies a piecewise a(x)
that is related to the link capacity. The fixed rate control interval
of UDT is SYN, or the synchronization time interval, which is
0.01 second. UDT rate control is a special DAIMD algorithm by
specifying a(x) as:

⎡ ⎤

SYNS
x xCL 1150010)())(log(⋅×= −− τα (3)

In formula (3), x has the unit of packets/second. L is the link
capacity measured by bits/second. S is the UDT packet size (in
terms of IP payload) in bytes. C(x) is a function that converts the
unit of the current sending rate x from packets/second to
bits/second (C(x) = x * S * 8). τ is a protocol parameter, which is
9 in the current protocol specification.
The factor of (1500/S) in function (3) is to balance the impact of
flows with different packet sizes. UDT treats 1500 bytes as a
standard packet size.

Table 1 gives an example of how UDT increases its sending rate
under different situations. In this example, we assume all packets
are in 1500 bytes.

Table 1: UDT increase parameter computation example. The
first column represents the estimated available bandwidth and the
second column represents the increase in packets per SYN. While
the available bandwidth increases to the next scope of 10's
integral power, the increase parameter also increases by 10
times.

B = L - C (Mb/s) inc (packets/SYN)
B ≤ 0.1 0.00067
0.1 < B ≤ 1 0.001
1 < B ≤ 10 0.01
10 < B ≤ 100 0.1
100 < B ≤ 1000 1
… …

The UDT congestion control described above is not enabled until
the first NAK is received or the flow window has reached the
maximum size. This is the slow start period of the UDT
congestion control. During this time the inter-packet time is kept
as zero. The initial flow window size is 2 and it is set to the
number of acknowledged packets each time an ACK is received.
The slow start only happens at the beginning of a UDT
connection, and once the above congestion control scheme is
enabled, it will not happen again.

Figure 5: Sending rate changes over time. This figure shows
how the sending rate of a single UDT flow changes over time.
This is the situation when there is no non-congestion loss and no
other flows in the system; otherwise there will be oscillations in
the sending rate.

6

Figure 5 shows an illustration of the increase of data sending rate
of a single UDT flow. At each stage k (k = 0, 1, 2,…), the
equilibrium can be reached when 0=x& , or intuitively, when the
increase is balanced off by the decrease. The sending rate at
equilibrium of stage k is approximately [27]:

2
9

103*
−+−

⋅=
ek

k p
x (4)

where p is the loss rate, and e is a value such that 10e-1 < L ≤ 10e.
Many characteristics of UDT can be further deduced using
formula (4). One interesting example is TCP friendliness. By
comparing (4) against the simple version of the TCP throughput
model (RTTp //5.1) [48], we can reach a sufficient condition
to guarantee that UDT is less aggressive than TCP:

6/10822 ⋅≤⋅ SYNLRTT (5)

Condition (5) shows that UDT is very friendly to TCP in low
BDP environments. In addition, RTT has more impact on TCP
friendliness than bandwidth.

3.2 Bandwidth Estimation
UDT uses receiver-based packet pairs [2] to estimate the link
capacity L. The UDT sender sends out a packet pair (by omitting
the inter-packet waiting time) every 16 data packets. Other
patterns of packet pair or train can also be used because at the
receiver side, whether the incoming packets consist of a packet
pair or train can be determined from their timestamp information.
The receiver records the inter-arrival time of each packet pair or
train and uses a median filter (more complex mechanisms can be
found in [44, 50]) on them to compute link capacity. Suppose the
median inter-arrival time is T and the average packet size in the
measure period is S, then the link capacity can be estimated by
S/T.
There are two major concerns in using packet pairs to estimate
link capacity. One is the impact of cross traffic [19]. The
existence of cross traffic can cause the capacity be
underestimated. The other concern is the NIC interrupt
coalescence [52]. High speed NICs often have the functionality of
interrupt coalescence to avoid too frequent interrupts. This can
cause multiple packet arrivals to be notified by one single
interrupt and hence the link capacity may be overestimated. This
error can be eliminated by using the average inter-arrival time of
multiple packet pairs.
Nevertheless, estimation error is inevitable in most cases. We
have seen that UDT may overestimate the capacity when there is
only one flow in the network, whereas it tends to underestimate
the capacity when there are multiple flows. For a single flow,
capacity estimation error only affects the convergence time. For
multiple flows, it can also affect the fairness. (Note that if all
flows have the same estimation error, they can still reach
fairness.)
One of the important reasons to use a ceiling function in UDT's
increase formula (3) is to reduce the impact of estimation errors.
As a simple intuitive example, if two flows share one 100 Mb/s
link, flow 1 measures the link capacity as 101 Mb/s and flow 2
measures it as 99 Mb/s, then the two flows will still share the
bandwidth almost equally. After flow 1 exceeds 1 Mb/s, it will

enter the same stage as flow 2, and both of the two flows will
have the same increments and decrements.

3.3 Dealing with Packet Loss
While in most loss-based congestion control work, packet loss is
regarded as a simple congestion indication, few of them have
investigated the loss pattern in real networks. Because one single
loss may cause a multiplicative rate decrease, dealing with packet
loss is very important.
There are three particular kinds of situations related to packet loss
that need to be addressed: loss synchronization, non-congestion
loss, and packet reordering. Loss synchronization is a condition in
which all concurrent flows experience packet loss at almost the
same time. Non-congestion loss is usually caused by link error
and can give transport protocols false signals of network
congestion. Finally, packet reordering can mislead the receiver as
packet losses.
In particular, there has been an effective approach for packet
reordering [69], so in this subsection we only focus on the first
two situations, for which the solutions in literatures do not apply
to UDT.

3.3.1 Loss Synchronization
The phenomenon of "loss synchronization" or "global
synchronization" is the situation when all concurrent flows
increase and decrease their sending rate at the same time, thus the
aggregate throughout has a very large oscillation and leads to low
aggregate utilization of the bandwidth. This is due to the fact that
almost all the flows will experience packet drops when congestion
occurs and have to drop their sending; when there is no
congestion, they all increase the sending rate.
We use a randomization method to alleviate this problem. To
describe this method, we define three terms. A loss event is the
event when packet losses are detected. A UDT sender can detect a
loss event when it receives a NAK report. A congestion event is a
particular loss event when the largest sequence number of the lost
packets in this loss event is greater than the largest sequence
number that has been sent when the last rate decrease occurred.
We call the period between two continuous congestion events a
congestion epoch. Suppose there are M loss events between two
continuous congestion events, and N is a random number that
satisfies the uniform distribution between 1 and M.
For each congestion epoch, the decrease factor of the UDT
control algorithm is randomized starting from 1/9 to [1 – (8/9)N].
Once a NAK is received, if this NAK starts a new congestion
epoch, i.e., this is a congestion event, the packet-sending period is
increased by 1/8 (which is equivalent to decreasing the sending
rate by 1/9), and the packet sending is stopped for the next SYN
time. For every N loss events, the packet sending period will be
further increased by another 1/8.
The process above can be described with the algorithm described
in Figure 7. In this algorithm, LSD is the largest sequence number
ever sent when the last NAK is received, STP is the packet
sending period, NumNAK and AvgNAK are two variables used to
record the number of NAKs in the current congestion epoch and
its smooth average value (the M value), and DR is the random
number between 1 and AvgNAK (the N value).

7

Figure 6: De-synchronization of UDT control algorithm. The
figure demonstrates the random loss decrease algorithm. In this
figure, each node is a loss event on the time sequence, whereas a
congestion epoch is noted as the period between the source and
the sink of a directional arrow on the time sequence. In this
example sequence, the first congestion epoch contains 5 loss
events.

Algorithm: Random Loss Decrease
1) If the largest lost sequence number in the NAK is greater than

LSD:
a) Increase the STP by 1/8: STP = STP * (1 + 1/8).
b) Update AvgNAK: AvgNAK = (AvgNAK * 7 + NumNAK) /

8.
c) Update DR = rand(AvgNAK).
d) Reset NumNAK = 0;
e) Record LSD.

2) Otherwise, increase NumNAK by 1, and if NumNAK % DR = 0:
a) Increase the STP by 1/8: STP = STP * (1 + 1/8).
b) Record LSD.

Figure 7: Random loss-based decrease algorithm.

Note that the use of explicit loss report (NAK) is different from
the use of duplicate ACKs in TCP. With duplicate ACKs, the
sender may not know all the loss events in one congestion event,
and usually only the first loss event is detected. In fact, most TCP
implementations will not drop the sending rate more than once in
each RTT. However, in UDT, all loss events will be reported by
NAK.

3.3.2 Noisy Link
Loss based control algorithms might not work well if there are
significant non-congestion packet losses (e.g., due to link error,
bad behavior of equipments, etc.), because they regard all packet
losses as due to network congestion and will decrease the data
sending rate accordingly. Although the link error rate on optical
links is extremely small, sometimes there are non-congestion
packet losses due to equipment problems and wrong
configurations. We use a simple mechanism in UDT to tolerate
such problems.
On noisy links, UDT does not react to the first packet loss in a
congestion event. However, it will decrease the sending rate if
there is more than one packet loss in one congestion event. This
scheme is very effective in networks with small non-congestion
packet losses. Not surprisingly, it also works for light packet
reordering problems.
This algorithm is equivalent to removing Step 1.a in the random
loss decrease algorithm described in Figure 7.

4. COMPOSABLE UDT
4.1 Overview
While UDT has been successful for bulk data transfer over high-
speed networks, we feel that it could have benefited a much
broader audience. We expanded UDT so that it can be easily
configurable to satisfy more requirements for both network
research and application development. We call this Composable
UDT.
However, we emphasize here that this framework is not a
replacement for, but a complement to, the kernel space network
stacks. General protocols like UDP, TCP, DCCP [41], and SCTP
[58] should still exist inside the kernel space of operating systems,
but OS vendors may be reluctant to support too many protocols
and algorithms, especially those application specific or network
specific ones.
Composable UDT supports a wide variety of control algorithms,
including but not limited to, TCP algorithms (e.g., NewReno [24],
Vegas [10], FAST [37], Westwood [25], HighSpeed [23], BiC
[67], and Scalable [40]), bulk data transfer algorithms (e.g.,
SABUL [26], RBUDP [33], LambdaStream [66], CHEETAH
[61], and Hurricane [65]), and group transport control algorithms
(e.g., CM [4] and GTP [63]).
We envision the following use scenarios for Composable UDT:

• Implementation and deployment of new control algorithms.
Certain control algorithms may not be appropriate to be
deployed in kernel space, e.g., a bulk data transfer
mechanism used only in private links. These algorithms can
be implemented using Composable UDT.

• Application awareness support and dynamic configuration.
An application may choose different congestion control
strategies under different networks, different users, and even
different time slots. Composable UDT supports these
application aware algorithms.

• Evaluation of new control algorithms. Even if a control
algorithm is to be deployed in kernel space, it needs to be
tested thoroughly before OS vendors distribute the new
version. It is much easier to test the new algorithms using
Composable UDT than modifying an OS kernel.

4.2 The CCC Interface
We identify four categories of configuration features to support
configurable congestion control mechanisms. They are 1) control
event handler callbacks, 2) protocol behavior configuration, 3)
packet extension, and 4) performance monitoring.

4.2.1 Control Event Callbacks
Seven basic callback functions are defined in the base CCC class.
They are called by UDT when a control event is triggered.

init and close: These two methods are called when a UDT
connection is set up and when it is torn down. They can be used to
initialize necessary data structures and release them later.

onACK: This handler is called when an ACK (acknowledgment)
is received at the sender side. The sequence number of the
acknowledged packet can be learned from the parameters of this
method.

onLoss: This handler is called when the sender detects a packet
loss event. The explicit loss information is given to users as the

8

onLoss interface parameters. Note that this method may be
redundant for most TCP algorithms that use only duplicate ACKs
to detect packet loss.

onTimeout: A timeout event can trigger the action defined by this
handler. The timeout value can be assigned by users, otherwise it
uses the default value according to the TCP RTO calculation
described in RFC 2988 [51].

onPktSent: This is called right before a data packet is sent. The
packet information (sequence number, timestamp, size, etc.) is
available through the parameters of this method.

onPktReceived: This is called right after a data packet is
received. Similar to onPktSent, the entire packet information can
be accessed by users through the function parameters.
onPktSent and onPktReceived are the two most powerful event
handlers, because they allow users to check every single data
packet. For example, onPktReceived can be redefined to compute
the loss rate in TFRC. Due to the same reason, these two
callbacks can also allow users to trace the microscopic behavior
of a protocol.

processCustomMsg: This method is used for UDT to process
user-defined control messages.

4.2.2 Protocol Configuration
To accommodate certain control algorithms, some of the protocol
behavior has to be customized. For example, a control algorithm
may be sensitive to the way that data packets are acknowledged.
Composable UDT provides necessary protocol configuration APIs
for these purposes.
It allows users to define how to acknowledge received packets at
the receiver side. The functions of setACKTimer and
setACKInterval determine how often an acknowledgment is sent,
in elapsed time and the number of arrived packets, respectively.
The method of sendCustomMsg sends out a user-defined control
packet to the peer side of a UDT connection, where it is processed
by callback functions processCustomMsg.
Finally, Composable UDT also allows users to modify the values
of RTT and RTO. A new congestion control class can choose to
use either the RTT value provided by UDT, or its own calculated
value. Similarly, the RTO value can also be redefined.

4.2.3 Packet Extension
It is necessary to allow user-defined control packets for a
configurable protocol stack.
Because our Composable UDT library is mainly focused on
congestion control algorithms, we only give limited customization
ability to the control packets. Data packet processing contributes
to a large portion of CPU utilization and customized data packets
may hurt the performance.
Users can define their own control packets using the Extended
Type information in the UDT control packet header (Figure 3).
The detailed control information carried by these packets varies
depending on the packet types. At the receiver side, users need to
override processCustomMsg to tell Composable UDT how to
process these new types of packets.

4.2.4 Performance Monitoring
Protocol performance information supports the decisions and
diagnosis of a control algorithm. For example, certain algorithms

need some history information to tune the future packet-sending
rate. Meanwhile, when testing new algorithms, performance
statistics and internal protocol parameters are needed.
The performance monitor provides information including the
duration time since the connection was started, RTT, sending rate,
receiving rate, loss rate, packet sending period, congestion
window size, flow window size, number of ACKs, and number of
NAKs. UDT records these traces whenever the values are
changed.
These performance traces can be read in three categories (when
applicable): the aggregate values since the connection started, the
local values since the last time the trace is queried, and the instant
values when the query is made.

4.3 Expressiveness
To evaluate the expressiveness of Composable UDT, we
implement a set of representative control algorithms using the
library. Any algorithms belonging to a similar set can be
implemented in a similar way. Meanwhile, we show that the
implementation is simple and easy to learn.
In this section, we describe in detail how to implement control
algorithms of rate based UDP, TCP variants, including both loss-
based and delay-based algorithms, and group transport protocols
as well.
Composable UDT uses an object-oriented design. It provides a
base C++ class (CCC) that contains all the functions and event
handlers described in Section 4.2.1. A new control algorithm can
inherit from this class and redefine certain control event handlers.
The implementation of any control algorithm is to update at least
one of the two control parameters: the congestion window size
(m_dCWndSize) and the packet-sending period
(m_dPacketPeriod), both of which are CCC class member
variables.

4.3.1 Rate-based UDP
A rate-based reliable UDP library (CUDPBlast) is often used to
transfer bulk data over private links. To implement this control
mechanism, CUDPBlast initializes the congestion window with a
very large value so that the window size will not limit the packet
sending. The rest is to provide a method to assign a data transfer
rate to a specific CUDPBlast instance. A piece of pseudo code is
shown below:

class CUDPBlast: public CCC
{
public:
 CUDPBlast() {m_dCWndSize = 83333.0;}

 void setRate(int mbps)
 {
 m_dPktSndPeriod = (SMSS * 8.0) / mbps;
 }
}

By using setsockopt an application can assign CUDPBlast to a
UDT socket and by using getsockopt the application can obtain a
pointer to the instance of CUDPBlast being used by the UDT
socket. The application can then call the setRate method of this
instance to set or modify a fixed sending rate at any time.

9

4.3.2 Standard TCP (TCP NewReno)
As a more complex example, we further show how to use the
Composable UDT library to implement the standard TCP
congestion control algorithm (CTCP). Because a large portion of
newly proposed congestion control algorithms are TCP-based,
this CTCP class can be further inherited and redefined to
implement more TCP variants, which we will describe in the next
two subsections.
TCP is a pure window-based control protocol. Therefore, during
initialization, the inter-packet time is set to zero. In addition, TCP
needs data packets to be acknowledged frequently, usually every
one or two packets1. This is also configured in the initialization.
TCP does not need explicit loss notification, but uses three
duplicate ACKs to indicate packet loss. Therefore, for congestion
control, CTCP only redefined two event handlers: onACK and
onTimeout. In onACK, CTCP detects duplicate ACKs and takes
proper actions. Here is the pseudo code of the fast retransmit and
fast recovery algorithm in RFC 2581 [3]:

virtual void onACK(const int& ack)
{
 if (three duplicate ACK detected)
 {
 // ssthresh = max{flight_size / 2, 3}
 // cwnd = ssthresh + 3 * SMSS
 }
 else if (further duplicate ACK detected)
 {
 // cwnd = cwnd + SMSS
 }
 else if (end fast recovery)
 {
 // cwnd = ssthresh
 }
 else
 {
 // cwnd = cwnd + 1/cwnd
 }
}

The CTCP implementation can provide more TCP event handlers
such as DupACKAction and ACKAction, which will further
reduce the work of implementing new TCP variants.
Note that here we are only implementing TCP’s congestion
control algorithm, but NOT the whole TCP protocol. The
Composable UDT library does not implement exactly the same
protocol mechanisms as in the TCP specification but it does
provide similar functionality. For example, TCP uses byte-based
sequencing whereas UDT uses packet-based sequencing, but this
should not prevent CTCP from simulating TCP’s congestion
avoidance behavior.

4.3.3 New TCP Algorithms (Loss-based)
New TCP variants that use loss-based approaches usually redefine
the increase and decrease formulas of the congestion window size.

1 Although TCP uses accumulative acknowledgments, a TCP

implementation usually acknowledges at the boundary of a data
segment. This is equivalent to acknowledging a UDT data
packet in CTCP.

Implementations of these protocols can simply inherit from CTCP
and redefine proper TCP event handlers.
For example, to implement Scalable TCP, we can simply derive a
new class from CTCP, and override the actions of increasing (by
0.01 instead of 1/cwnd) and decreasing (by 1/8 instead of 1/2) the
congestion window size.
Similarly, we have also implemented HighSpeed TCP (CHS), BiC
TCP (CBiC), and TCP Westwood (CWestwood).

4.3.4 New TCP Algorithms (Delay-based)
Delay-based algorithms usually need accurate timing information
for each packet. For efficiency, UDT does not calculate RTT for
each data packet because it is unnecessary for most control
algorithms. However, this can be done by overriding onPktSent
and onACK event handlers, where the time of packet sending and
the arrival of its acknowledgment can be recorded. For algorithms
preferring one-way delay (OWD) information, each UDT packet
contains the sending time in its packet header, and a new
algorithm can override onPktReceived to calculate OWD.
Using the strategy described above, we implement the TCP Vegas
(CVegas) control algorithm. CVegas uses its own data structure to
record packet departure timestamps and ACK arrival timestamps,
and then calculates accurate RTT values. With simple
modifications to the control formulas, we further implement
FAST TCP (CFAST).

4.3.5 Group Transport Control
While we have demonstrated that Composable UDT can be used
to implement end-to-end unicast congestion control algorithms,
we now show that it can also be used to implement group-based
control mechanisms, such as CM and GTP.
To support this feature, the new algorithm class simply needs to
implement a central manager to control a group of connections.
The control parameters are calculated by the central manager and
then fed back to the control class instance of each individual
connection.
We implemented GTP (CGTP) as an example of group-based
control mechanisms. The GTP protocol controls a group of flows
with the same destination. CGTP tunes the packet-sending rate at
the receiver side periodically and feeds back the parameters using
Composable UDT’s sendCustomMsg method.

4.3.6 Summary
We have implemented nine example algorithms using
Composable UDT, including rate-based reliable UDP, TCP and
its variants, and group-based protocols. We demonstrated that our
Composable UDT library can support a large variety of
congestion control algorithms, which are supported by only 8
event handlers, 4 protocol control functions, and 1 performance
monitoring function.
The concise Composable UDT API is easy to learn. In fact, it
takes a small piece of code to implement most of the algorithms
described above. Table 2 lists the lines of code (LOC) of
implementations of TCP algorithms using Composable UDT, as
well as the LOC of those native implementations (Linux kernel
patches). The LOC value is estimated by the number of
semicolons in the corresponding C/C++ code segment.
To give more insight into the difference between LOCs in
Composable UDT based implementations and native

10

implementations, we use the FAST TCP case as an example. The
31 lines of CFAST only implement the FAST congestion
avoidance algorithm, whereas much of its code, especially the
timing part, is inherited from CVegas. In contrast, of the 367 lines
of FAST TCP patch, 142 of them are used to implement the
FAST protocol (new files), 81 lines are used to modify the Linux
TCP files, 86 lines are used to do monitoring and statistics, and 58
lines are used to do burst control and pacing.
As a reference point, the UDT library has 3134 lines of effective
code (i.e., excluding comments, blank lines, etc.), SABUL has
2670 lines of code, and the RBUDP library has approximately
2330 lines of code. While these numbers are not enough to reflect
the complexity of implementing a transport protocol, the much
smaller number of LOC values of Composable UDT based
implementation can indicate the simplicity.

Table 2. Lines of code (LOC) of implementations of TCP
algorithms. This table lists LOC of different TCP algorithms
implemented using Composable UDT and their respective Linux
kernel patches (native implementations). The LOC of Linux
patches include both added lines and removed lines.

Native Protocol Composable

UDT Added Removed
TCP 28 -
Scalable TCP 11 192 29
HighSpeed TCP 8 27 1
BiC TCP 38 248 30
TCP Westwood 27 145 2
TCP Vegas 37 + 362 132 6
FAST TCP 31 365 2

CCC

CTCP CGTP CUDPBlast

CScalable CBiC CHS CWestwoodCVegas

CFAST

Figure 8: Composable UDT based protocols. This figure shows
the class inheritance relationship among the control algorithms
we implemented. Note that this is only for the purpose of code
reuse, and it does NOT imply any other relationship among these
algorithms.

To give more insight into the difference between LOCs in
Composable UDT based implementations and native
implementations, we use the FAST TCP case as an example. The
31 lines of CFAST only implement the FAST congestion
avoidance algorithm, whereas much of its codes, especially the
timing part, are inherited from CVegas. In contrast, of the 367

2 CVegas reuses a timing class implemented by UDT, which

contains 36 lines of code.

lines of FAST TCP patch, 142 of them are used to implement the
FAST protocol (new files), 81 lines are used to modify the Linux
TCP files, 86 lines are used to do monitoring and statistics, and 58
lines are used to do burst control and pacing.
The class inheritance relationship of these Composable UDT
implemented algorithms can be found in Figure 8. Code reuse by
class inheritance also contributes to the small LOC values of
those TCP-based algorithms.

4.4 Similarity
In most cases, congestion/flow control algorithms are the most
significant factor that determines a protocol’s performance-related
behavior (throughput, fairness, and stability). Less significant
factors include other protocol control mechanisms, such as RTT
calculation, timeout calculation, acknowledgment interval, etc.
We have made most of these control mechanisms configurable
through the CCC interface and the UDT protocol control
interface. In this subsection we will show that a Composable UDT
based implementation demonstrates similar performance to a
native implementation.
Since TCP is probably the most representative control protocol,
we compared an application level TCP implementation using our
Composable UDT library (CTCP) against the standard TCP
implementation provided by Linux kernel 2.4.18.
The experiment was performed between two Linux boxes
between Chicago and Amsterdam. The link is 1 Gb/s with 110 ms
RTT and was reserved for our experiment only in order to
eliminate cross traffic noises. Each Linux box has dual Xeon
2.4GHz processors and was installed with Linux kernel 2.4.18.
We started multiple TCP and CTCP flows in separate runs, each
of which was kept running for at least 60 minutes. The total TCP
buffer size was set to at least the size of BDP (bandwidth delay
product). Both TCP and CTCP experiments used the same testing
program (except the connections were TCP and CTCP,
respectively) with the same configuration (buffer size, etc.).
We recorded the aggregate throughput (value between 0 and 1000
Mbps), fairness index (value between 0 and 1), and stability index
(equal to or greater than 0) in Table 3. The definitions of the
fairness index and stability index can be found in Section 5. The
fairness index represents how fairly the bandwidth is shared by
concurrent flows and larger values are better. The stability index
describes the oscillations of the flows and smaller values mean
less oscillation. These three measurements summarize most of the
performance characteristics of a congestion control algorithm.
From Table 3, we find that TCP and CTCP have pretty similar
throughput for small numbers of parallel flows. However, as the
number of parallelism increases, CTCP stops increasing its
throughput first and thus has a significantly smaller throughput
than TCP when there are 64 parallel flows3 . Further analysis
indicates that the reason for this is that CTCP costs more CPU
than kernel implemented TCP and with 64 flows the CPU time
has been used up. To verify this assertion, we started another
experiment using machines with dual AMD 64-bit Opteron
processors and this time CTCP reaches more than 900Mbps at 64
parallel flows.

3 TCP throughput will also start to decrease as the number of

parallel flows increases [56].

11

Table 3: Performance characteristics of TCP and CTCP with
various parallel flows. The table lists the aggregate throughput
(in Mb/s), fairness index, and stability index of concurrent TCP
and CTCP flows. Each row records an independent run with a
different number of parallel flows.

Throughput Fairness Stability Flow

TCP CTCP TCP CTCP TCP CTCP
1 112 122 1 1 0.517 0.415
2 191 208 0.997 0.999 0.476 0.426
4 322 323 0.949 0.999 0.484 0.492
8 378 422 0.971 0.999 0.633 0.550
16 672 642 0.958 0.985 0.502 0.482
32 877 799 0.988 0.997 0.491 0.470
64 921 716 0.994 0.996 0.569 0.529

In spite of the CPU utilization limitation, both of the
implementations have similar performance on fairness and
stability. They both realize good fairness with near-one fairness
indexes, as the AIMD algorithm indicates. The stability indexes
are around 0.5 for all runs.
In addition to the experiments above, we have also tested several
reliable UDP-based protocols such as UDP Blast (CUDPBlast) to
examine if the Composable UDT based implementation conforms
to the protocol’s theoretical performance. We also examined the
performance of Composable UDT in a real streaming merge
application, in which the receiver (where data is merged) requests
an explicit sending rate to the data sources. This service is
provided by a specific control mechanism implemented using
Composable UDT. The results of these experiments were positive
and the expected performance was reached.

5. PERFORMANCE EVALUATION
In this section, we evaluate UDT’s performance using several
experiments on real high-speed networks. While we have also
done extensive simulations covering the majority of network
situations, we choose real world experiments here because they
give us more insight into UDT's performance.
We use TCP as the baseline to compare against UDT. While there
are many new protocols and congestion control algorithms, it is
difficult to choose a mature one as the baseline; complete
comparison of all these protocols is a relatively complicated
process and is beyond of the scope of this paper. In fact, there has
been work to compare some of these protocols [5, 7, 32, 42, 43].
In particular, a rather complete experimental comparison on new
TCP variants can be found in [32].

5.1 Evaluation Strategy
The performance characteristics to be examined include
efficiency (throughput), intra-protocol fairness, TCP friendliness,
and stability. We will also evaluate the implementation efficiency
(CPU usage).
Efficiency (Throughput). We define the efficiency of UDT as
the aggregate throughput of all concurrent UDT flows. Efficiency
is one of the major objectives of UDT, which is supposed to
utilize the high bandwidth efficiently, that is, utilize as much
bandwidth as possible. In grid computing, there are usually only a

small number of bulk data flows sharing the network. A single
UDT flow should reach high efficiency as well.
Suppose there are m UDT flows in the network and the i-th flow
has an average throughout of xi, the efficiency index is defined as

∑
=

=
m

i
ixE

1

Intra-protocol Fairness. The fairness characteristic measures
how fairly the concurrent UDT flows share the bandwidth. The
most frequently used fairness rule is the max-min fairness, which
maximizes the throughput of the poorest flows. If there is only
one bottleneck in the system, then all the concurrent flows should
share the bandwidth equally according to the max-min rule. In
this case, we can use Jain’s fairness index [35] to quantitatively
measure the fairness characteristics of a transport protocol.

∑∑
==

⋅⎟
⎠

⎞
⎜
⎝

⎛
=

n

i
i

n

i
i xnxF

1

2
2

1

where n is the number of concurrent flows and xi is the average
throughput of the i-th flow. F is always less than or equal to 1. A
larger value of F means better fairness, and F = 1 is the best,
which means all flows have equivalent throughput.

TCP Friendliness. TCP friendliness is rather a more obscure
measurement than the others, because it is almost impossible for a
protocol with different control algorithms to reach the same
performance as TCP's and it is not reasonable to limit the
throughput of a new protocol in high BDP environments to the
throughput of TCP while the latter is very inefficient.
We consider the TCP friendliness separately in different
situations, which are related to two factors: the network BDP and
the TCP flow lifetime. First, in low BDP environments, where
TCP can utilize the bandwidth efficiently, we expect that UDT
should at least share the bandwidth with TCP fairly (equally); in
high BDP environments, where TCP cannot efficiently use the
bandwidth, we expect UDT to make use of the bandwidth that
TCP fails to use but leave enough space for TCP to increase.
Second, TCP's behavior can be very different for bulk flows and
short-lived flows (considering the impact of TCP slow start at the
beginning of a connection). We consider the situation of short-
lived TCP separately because a majority of TCP traffic over the
Internet are short-lived flows (e.g., web traffic).
For bulk TCP flows, suppose there are m UDT and n TCP flows
coexisting in the network. With the same network configuration,
we start m+n TCP flows separately. The average throughput for
the i-th TCP flow in each run is

ix and iy , respectively. We define
the TCP friendliness index as:

∑∑
+

== +
=

nm

i
i

n

i
i y

nm
x

n
T

11

11

where the denominator is the fair share of TCP.

T = 1 is the ideal friendliness; T > 1 means UDT is too friendly;
and T < 1 means UDT overruns TCP.

For short-lived flows, we will compare the aggregate throughput
of a large number of small TCP flows under different numbers of
background bulk UDT flows.

12

Stability (Oscillations). We use the term “stability” in this
section to describe the oscillation characteristic of a data flow. A
smooth flow is regarded as desirable behavior for most situations,
and it often (although not necessarily) leads to better throughput.
Note that this is different from the meaning of “stable” in control
theory, and the latter means the convergence to a unique
equilibrium from any start point.

To measure oscillations, we have to consider the average
throughput in each unit time interval (a sample). We use standard
deviation of the sample values of the throughput of each flow to
express its oscillation [37]:

()∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=

n

i

m

k
ii

i

xkx
mxn

S
1 1

2)(
1

111

where n is the number of concurrent flows; m is the number of
throughput samples for each flow; xi(k) is the k-th sample value of
flow i; and ix is the average throughput of flow i.

CPU Usage. CPU usage is usually measured by the usage
percentage. Note that CPU percentage is system dependable.
These values are only comparable against those values obtained
on the same system, or at least systems with the same
configuration.

5.2 Efficiency, Fairness, and Stability
We performed two groups of experiments in different network
settings to examine UDT’s efficiency, intra-protocol fairness, and
stability property.

5.2.1 Case Study 1
In the first group of experiments, we start three UDT flows from a
StarLight node to another StarLight local node, a node in Canarie
(Ottawa, Canada), and a node in SARA (Amsterdam, the
Netherlands), respectively (Figure 9). All nodes have a 1Gb/s NIC
and dual Xeon CPU and are installed with Linux 2.4.

1 Gb/s

RTT = 110 ms
Chicago

Ottawa

Amsterdam

Chicago 1 Gb/s
RTT = 40us

Figure 9: Experiment network configuration. This figure shows
the network configuration connecting our machines used for
testing at Chicago, Ottawa, and Amsterdam. Between any two
local Chicago machines the RTT is about 40us and the bottleneck
capacity is 1Gb/s. Between any two machines at Chicago and
Amsterdam respectively the RTT is 110ms and the bottleneck
capacity is 1Gb/s. Between any two machines at Chicago and
Ottawa respectively the RTT is 16ms and the bottleneck capacity
is 622Mb/s. Amsterdam and Ottawa are connected via Chicago.
The total bandwidth connecting the Chicago cluster is 1Gb/s.

Figure 10 shows the throughout of the single UDT flow over each
link when the three flows are started separately. A single UDT
flow can reach about 940Mbps over 1Gbps link with both 40us
short RTT and 110ms long RTT. It can reach about 580Mbps over

an OC-12 link with 15.9ms RTT between Canarie and StarLight.
In contrast, TCP only reaches about 128 Mb/s from Chicago to
Amsterdam after a thorough tuning for performance.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

to Chicago, 1Gbps, 0.04ms
to Canarie, OC-12, 16ms
to Amsterdam, 1Gbps, 110ms

Figure 10: UDT performance over real high-speed network
testbeds. This figure shows the throughput of a single UDT flow
over three different links described in Figure 4-17. The three
flows are started separately and there is no other traffic during
the experiment.

Figure 11 shows the throughput when the three flows were started
at the same time. This experiment demonstrates the fairness
property among UDT flows with different bottleneck bandwidths
and RTTs. All the three flows reach about 325 Mb/s. Using the
same configuration, TCP’s throughputs are 754 Mb/s (to
Chicago), 151 Mb/s (to Canarie), and 27 Mb/s (to Amsterdam),
respectively.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

0 10 20 30 40 50 60 70 80 90 100
320

322

324

326

328

330

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

to StarLight, 40us RTT
to Canarie, 16ms RTT
to SARA, 110ms RTT

Figure 11: UDT fairness in real networks. This figure shows the
throughputs of 3 concurrent UDT flows over the different links
described in Figure 10. No other traffic exists during the
experiment. The sub-figure below is a local expansion of the sub-
figure above.

5.2.2 Case Study 2
We set up another experiment to check the efficiency, fairness,
and stability performance of UDT at the same time. The network
configuration is shown in Figure 12. Two sites, StarLight
(Chicago) and SARA (Amsterdam), are connected with 1 Gb/s
link. At each site, four nodes are connected to the gateway switch
through 1GigE NIC. The RTT between the two sites is 104ms. All
nodes run Linux 2.4.19 SMP on machines with dual Intel Xeon
2.4GHz CPUs.

13

Figure 12: Fairness testing configuration. This figure shows the
network topology used in UDT experiments. Four pairs of nodes
share 1 Gb/s, 104 ms RTT link connecting two clusters at Chicago
and Amsterdam, respectively.

For the four pairs of nodes, we start a UDT flow every 100
seconds, and stop each of them in the reverse order every 100
seconds, as depicted in Figure 13.

Figure 13: Flow start and stop configuration. This figure shows
the UDT flow start/termination sequence in an experiment
configuration. There are 4 UDT flows and each flow is started
every 100 seconds, and stopped in the reverse order every 100
seconds. The lifetime of each flow is 100, 300, 500, and 700
seconds, respectively.

0 100 200 300 400 500 600 700
0

200

300

450

900

1000

Time (s)

Th
ro

ug
ho

ut
 (M

bi
ts

/s
)

Figure 14: UDT efficiency and fairness. This figure shows the
throughput of the 4 UDT flows in Figure 13 over the network in
Figure 12. The highest line is the aggregate throughput.

The results are shown in Figure 14 and Table 4. Figure 14 shows
the detailed performance of each flow and the aggregate
throughput. Table 4 lists the average throughput of each flow, the
average RTT and loss rate at each stage, the efficiency index (EI),
the fairness index (FI), and the stability index (SI).
All stages achieve good bandwidth utilization. The maximum
possible bandwidth is about 940 Mb/s on the link, measured by
other benchmark software. The fairness among concurrent UDT
flows is very close to 1. The stability index values are very small,
which means the sending rate is very stable (few oscillations).
Furthermore, UDT causes little increase in the RTT (107 ms vs.
104 ms) and a very small loss rate (no more than 0.1%).

Table 4: Concurrent UDT flow experiment results. This table
lists the per-flow throughput, end-to-end experienced RTT,
overall loss rate, the efficiency index, the fairness index, and the
stability index of the experiment of Figure 14.

Time
(sec)

1 -
100

101 -
200

201 -
300

301 -
400

401 -
500

501 -
600

601 -
700

Flow1 902 466 313 215 301 452 885
Flow2 446 308 216 310 452
Flow3 302 202 307
Flow4 197
RTT 106 106 106 106 107 105 105
Loss 0 10-6 10-4 10-3 10-3 0 10-6
EI 902 912 923 830 918 904 885
FI 1 .999 .999 .998 .999 1 1
SI 0.11 0.11 0.08 0.16 0.04 0.02 0.04

5.3 TCP Friendliness
Short-lived TCP flows such as web traffic and certain control
messages comprise a substantial part of Internet data traffic. To
examine the TCP friendliness property against such TCP flows,
we set up 500 TCP connections where each transfers 1MB of data
from Chicago to Amsterdam; a varying number of bulk UDT
flows were started as background traffic when the TCP flows are
started. TCP's throughput should decrease slowly as the number
of UDT flows increases. The results are shown in Figure 15. They
decrease from 69 Mb/s (without concurrent UDT flows) to 48
Mb/s (with 10 UDT concurrent flows).

0 1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

Number of UDT flows

TC
P

 T
hr

ou
gh

pu
t (

M
bp

s)

Figure 15: Aggregate throughput of 500 small TCP flows with
different numbers of background UDT flows. This figure shows
the aggregate throughput of 500 small TCP transactions (each
transferring 1MB data), under different numbers of background
UDT flows varying from 0 to 10.
In the next experiment, we demonstrate UDT's impact to bulk
data TCP flow in local networks where TCP works well. Figure
16 shows the result of 2 TCP flows and 2 UDT flows coexisting
in the StarLight local network, with 1 Gb/s link capacity and 40
µs RTT. TCP flows utilize slightly higher bandwidth than UDT
flows. We also start a 4-TCP experiment in the same network, and
obtain a TCP friendliness index of 1.12.

14

0
20

40
60

80
100

UDT1

UDT2

TCP1

TCP2
100

150

200

250

300

350

400

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 16: TCP friendliness in LAN. The figure shows the
throughput changes over time of 2 TCP flows and 2 UDT flows
coexisting in StarLight local networks, with 1Gbps link capacity
and 40us RTT.

Figure 17 shows the CPU utilization of a single UDT flow and a
single TCP flow (both sending and receiving) for memory-
memory data transfer. The CPU utilization of UDT is slightly
higher than that of TCP. UDT averaged 43% (sending) and 52%
(receiving). TCP averaged 33% (sending) and 35% receiving.
Considering that UDT is implemented at the user level, this
performance is acceptable.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Sample Event

C
P

U
 U

sa
ge

 (%
)

udt sending
udt receiving
tcp sending
tcp receiving

Figure 17: CPU utilization at sender and receiver sides. This
figure shows the CPU utilization percentage on the data source
machine and the data sink machine, when a single TCP and a
single UDT data transfer process is running. The test is between a
pair of Linux machines, each having dual 2.4GHz Intel Xeon
CPUs. The overall computation ability is 400% (due to hyper-
threading). Data is transferred at 970 Mb/s between memories.

6. RELATED WORK
6.1 TCP Modifications
Researchers have continually worked to improve TCP. A
straightforward approach is to use a larger increase parameter and
smaller decrease factor in the AIMD algorithm than those used in
the standard TCP algorithm. Scalable TCP [40] and High Speed
TCP [23] are the two typical examples of this class.
Scalable TCP increases its sending rate proportional to the current
value, whereas it only decreases the sending rate by 1/8 when
there is packet loss. HighSpeed TCP uses logarithmic increase
and decreases functions based on the current sending rates. Both
of the two TCP variants have better bandwidth utilization, but
suffer from serious fairness problems. The MIMD (multiplicative

increase multiplicative decrease) algorithm used in Scalable TCP
may not converge to fairness equilibrium, whereas HighSpeed
TCP converges very slowly.
BiC TCP [67] uses a similar strategy but proposes a more
complicated method to increase the sending rate. Achieving good
bandwidth utilization, BiC TCP also has a better fairness
characteristic than Scalable and HighSpeed TCP. Unfortunately,
none of the above three TCP variants address the RTT bias
problem; instead, the problem becomes more serious in these
three TCP versions, especially for Scalable TCP and HighSpeed
TCP.
TCP Westwood [25] tries to estimate the network situation
(available bandwidth) and then tunes the increase parameter
accordingly. The estimation is made through the timestamps of
acknowledgments. This strategy demonstrates a similar idea used
by UDT. However, the Westwood method may be seriously
damaged by the impact of ACK compression [68], which can
occur at the existence of reverse traffic or NIC interrupt
coalescence.
Other recently proposed loss-based TCP control algorithms also
include Layered TCP (L-TCP) [8] and Hamilton TCP (H-TCP)
[55]. L-TCP uses a similar strategy as HighSpeed TCP by
simulating the performance of multiple TCP connections to
realize higher bandwidth utilization. H-TCP tunes the increase
parameter and the decrease factor according to the elapsed time
since the last rate decrease.
Delay-based approaches have also been investigated. The most
well known TCP variant of this kind is probably the TCP Vegas
algorithm. TCP Vegas compares the current packet delay with the
minimum packet delay that has been observed. If the current
packet delay is greater, then it means that in some place the queue
is filling up, which indicates network congestion. Recently, a new
method that follows the Vegas' strategy called FAST TCP was
proposed. FAST uses an equation-based approach in order to react
to the network situation faster. Although there has been much
theoretical work on Vegas and FAST, many of their performance
characteristics on real networks are yet to be investigated. In
particular, the delay information needed by these algorithms can
be heavily affected by reverse traffic. As a consequence, the
performance of the two protocols is very vulnerable to the
existence of reverse traffic.

6.2 XCP
XCP [39], which adds explicit feedback from routers, is a more
radical change to the current Internet transport protocol. While
those TCP variants mentioned in subsection 6.1 tried many
methods to estimate the network situation, XCP takes advantage
of explicit information from the routers. As an XCP data packet
passes each router, the router calculates an increase parameter or a
decrease factor and updates the related information in the data
packet header. After the data packet reaches its destination, the
receiver sends the information back through acknowledgments.
An XCP router uses an MIMD efficiency controller to tune the
aggregate data rate according to the current available bandwidth
at the bottleneck node. Meanwhile, it still uses an AIMD fairness
controller to distribute the bandwidth fairly among all concurrent
flows.
XCP demonstrates very good performance characteristics.
However, it suffers more serious deployment problems than the

15

TCP variants because it requires changes in the routers, in
addition to the operating systems of end hosts. In addition, recent
work showed that gradual deployment (to update the Internet
routers gradually) has a significant performance drop [9].

6.3 Application Level Solutions
While TCP variants and new protocols such as XCP suffer from
deployment difficulties, application level solutions tend to
emerge.
A common approach is to use parallel TCP, such as PSockets [56]
and GridFTP [1]. Using multiple TCP flows may utilize the
network more efficiently, but this is not guaranteed. Performance
of parallel TCP relies on many factors from end hosts to
networks. For example, the number of parallel flows and the
buffer sizes of each flow have significant impact on the
performance. The optimal values vary on specific networks and
end hosts and are hard to tune. In addition, parallel TCP inherits
the RTT fairness problem of TCP.
Using rate-based UDP has also been proposed as a scheme for
high performance data transfer to overcome TCP’s inefficiency.
There is some work including SABUL [26], FOBS [18], RBUDP
[33], FRTP [71], and Hurricane [65]. All of these protocols are
designed for private or QoS-enabled networks. They have no
congestion control algorithm or have algorithms only for the
purpose of high utilization of bandwidth.

6.4 SABUL
SABUL (Simple Available Bandwidth Utilization Library) was
our prototype for UDT. The experiences obtained from SABUL
encouraged us to develop a new protocol with better protocol
design and a congestion control algorithm.
SABUL is an application level protocol that uses UDP to transfer
data and TCP to transfer control information. SABUL has a rate-
based congestion control algorithm as well as a reliability control
mechanism to provide efficient and reliable data transport service.
The first prototype of SABUL is a bulk data transfer protocol that
sends data block by block over UDP, and sends an
acknowledgment after each block is completely received. SABUL
uses an MIMD congestion control algorithm, which tunes the
packet-sending period according to the current sending rate. The
rate control interval is constant in order to alleviate the RTT bias
problem.
Later we removed the concept of block to allow applications to
send data of any size. Accordingly, the acknowledgment is not
triggered on the receipt of a data block, but is based on a constant
time interval. Our further investigation of the SABUL
implementation encouraged us to re-implement it from scratch
with a new protocol design.
Another reason for the redesign is the use of TCP in SABUL.
TCP was used for the simplicity of design and implementation.
However, TCP’s own reliability and congestion control
mechanism can cause unnecessary delay of control information in
other protocols that have their own reliability and congestion
control as well. The in-order delivery of control packets is
unnecessary in SABUL, but the TCP reordering can delay control
information. During congestion, this delay can be even longer due
to TCP’s congestion control.

6.5 High Speed Protocol Implementation
Several transport protocols for high-speed data transfer have been
proposed in the past, including NETBLT [15], VMTP [12], and
XTP [59]. They all use rate-based congestion control. NETBLT is
a block-based bulk transfer protocol designed for long delay links.
It does not consider the fairness issue. VMTP is used for message
transactions. XTP involves a gateway algorithm; hence it is not an
end-to-end approach.

For high performance data transfer, experiences in this area have
shown that implementation is critical to performance. Researchers
have put out some basic implementation guidelines addressing
performance. Probably the most famous two are ALF
(Application Level Framing [16]) and ILP (Integrated Layer
Processing [11]). The basic idea behind these two guidelines is to
break down the explicit layered architecture to reach more
efficient information processing.

Problems arising in Gb/s data transfer were identified a decade
ago [36]. Previously, Leue and Oechslin described a parallel
processing scheme for a high-speed networking protocol [45].
However, increases of CPU speed have surpassed increases in
network speed, and modern CPUs can fully process the data from
networks. Therefore, using multi-processors is not necessary any
more.

Memory copy still costs the most in terms of CPU time for high-
speed data transfer. Rodrigues, et al. [54] and Chu [14] have
identified this problem and addressed solutions to avoid data
replication between kernel space and user space.

There is also literature that describes the overall implementation
issues of specified transport protocols. For example, Edwards, et
al. describe an implementation of a user level TCP in [20], and
Banerjea, et al. present the Tenet protocol design and
implementation in [6].

6.6 Protocol Framework
There are few user level protocol stacks that provide a
programming interface for user-defined congestion control
algorithms as Composable UDT does.
The Globus XIO library has somewhat similar objectives, but the
approach is quite different. XIO implements a set of primitive
protocol components and APIs for fast creation or prototyping
new protocols, which helps the lower level simplification such as
timing and message passing. In contrast, Composable UDT allows
users to focus only on the congestion control algorithm, and thus
usually results in a much smaller program.
Other user level libraries include several user level TCP
implementations [21, 46, 60]. One particular implementation is
the Alpine [21] library. Alpine is an attempt to move the entire
kernel protocol stack into the user space, and provides (almost)
transparent application interfaces at the same time. None of these
libraries provide programmable interfaces.
In kernel space, the most similar work to Composable UDT is
probably the icTCP [31] library. It exposes key TCP parameters
and provides controls to these parameters to allow new TCP
algorithms deployed in user space. Despite the different nature of
kernel and user space implementations, icTCP limits the update
on TCP controls only, whereas Composable UDT supports a

16

broader set of protocols. Other work that uses a similar approach
to icTCP includes Web100/Net100 [47] and CM [4].
Another protocol, STP [49], has more radical changes but also has
more powerful expression ability. The STP’s approach is to
provide a set of protocol implementation APIs in a sandbox.
Meanwhile, STP itself is a protocol that supports run time code
upgrading; thus, new protocols or algorithms can be deployed
implicitly. To address the security problem arising from untrusted
code, STP involves a complex security mechanism.
Yet another more complex library is the x-kernel [34]. x-kernel is
an OS kernel designed to support data transport protocol
implementations. The support mechanism of x-kernel is a
modular based system and it is more decomposed than STP.
Besides the support of protocol implementation, x-kernel has
many optimizations inside the OS kernel for data
communications.
Other modularized approaches include CTP [62] and its high
performance successor [64].
While some of these in-kernel libraries may have performance
and transparency advantages, their goal of fast deployment of new
protocols/algorithms is compromised by the difficulty of getting
themselves deployed. For example, x-kernel has been proposed
for more than a decade and it still remains a research tool. In
contrast, Composable UDT library provides a very practical
solution for the time being.
In addition, kernel space approaches need to protect their host
systems and the network from security problems and they have to
limit users’ privileges to control the protocol behavior. For
example, both STP and icTCP prevent new algorithms from
utilizing more bandwidth than standard TCP. Such limitations are
not feasible for the new control algorithms for high-speed
networks such as Scalable, HighSpeed, BiC, and FAST. The
security problem is much less serious for Composable UDT
because it is at user space and it is only installed as needed (in
contrast, those libraries such as icTCP and STP will be accessible
to every user if they are accepted by OS vendors).

7. CONCLUSIONS
Scalability has been one of the major research problems of the
Internet community ever since the emergence of the World Wide
Web (WWW). The insufficient number of IP addresses may be
the most commonly known scalability problem. However, in
many high-speed networks researchers have also found that as a
network’s bandwidth-delay product increases TCP, the major
Internet data transport protocol, does not scale well either.

As an effective, timely, and practical solution to this BDP
scalability problem, we designed and implemented the UDT
protocol that can utilize the abundant optical bandwidth
efficiently and fairly in distributed data intensive applications.

UDT’s approach is highly scalable. Given that there is enough
CPU power, UDT can support up to unlimited bandwidth within
terrestrial areas. The timer-based selective acknowledgment
generates a constant number of ACKs no matter how fast the data
transfer rate is. The congestion control algorithm and the
bandwidth estimation technique allow UDT to increase to 90% of
the available bandwidth no matter how large it is. Finally, the
constant rate control interval removes the impact of RTT.

We have done extensive simulations and experimental studies to
verify UDT’s performance characteristics. UDT can utilize high
bandwidth very efficiently and fairly. The intra-protocol fairness
is maintained even between flows with different RTTs. This is
very important for many distributed applications.

To benefit a broader set of network developers and researchers,
we have expanded our UDT protocol and associated
implementation to accommodate various congestion control
algorithms.

In the short term, UDT is a practical solution to the data transfer
problem in the emerging distributed data intensive applications. In
the long term, because of the long time lag in deployment of in-
kernel protocols but the fast speed with which new applications
are emerging, UDT will still be a very useful tool in both
application development and network research.

The open source UDT library can be downloaded from
http://udt.sf.net.

8. ACKNOWLEDGMENTS
The work was support in part by US National Science
Foundation, US Department of Energy, and the US Army
Pantheon Project.

9. REFERENCES
[1] William Allcock, John Bresnahan, Rajkumar Kettimuthu,

Michael Link, Catalin Dumitrescu, Ioan Raicu, Ian Foster:
The Globus Striped GridFTP Framework and Server. SC 05,
Seattle, WA, Nov. 2005.

[2] M. Allman and V. Paxson: On estimating end-to-end
network path properties. ACM SIGCOMM '99, Cambridge,
MA, Aug. 30 - Sep. 3, 1999.

[3] M. Allman, V. Paxson, and W. Stevens: TCP congestion
control. IETF, RFC 2581, April 1999.

[4] David G. Andersen, Deepak Bansal, Dorothy Curtis,
Srinivasan Seshan, and Hari Balakrishnan: System support
for bandwidth management and content adaptation in
Internet applications. Proc. 4th USENIX Conference on
Operating Systems Design and Implementation (OSDI 2000),
San Diego, CA, October 2000.

[5] Cosimo Anglano, Massimo Canonico: A comparative
evaluation of high-performance file transfer systems for
data-intensive grid applications. WETICE 2004, pp. 283-288.

[6] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. C. Verma,
and H. Zhang: The Tenet real-time protocol suite: Design,
implementation, and experiences. IEEE/ACM Trans.
Networking, vol. 4, pp. 1-11, Feb. 1996.

[7] Amitabha Banerjee, Wu-chun Feng, Biswanath Mukherjee,
and Dipak Ghosal: Routing and scheduling large file
transfers over lambda grids. 3rd International Workshop on
Protocols for Fast Long-Distance Networks (PFLDNet
2005), Feb., 2005

[8] Sumitha Bhandarkar, Saurabh Jain, and A. L. Narasimha
Reddy: Improving TCP performance in high bandwidth high
RTT links using layered congestion control. Proc. PFLDNet
2005 Workshop, February 2005.

17

[9] Robert Braden, Aaron Falk, Ted Faber, Aman Kapoor, and
Yuri Pryadkin: Studies of XCP deployment issues. Proc.
PFLDNet 2005 Workshop, February 2005.

[10] L. Brakmo and L. Peterson. TCP Vegas: End-to-end
congestion avoidance on a global Internet. IEEE Journal on
Selected Areas in Communication, Vol. 13, No. 8 (October
1995) pages 1465-1480.

[11] T. Braun and C. Diot: Protocol implementation using
integrated layer processing. ACM SIGCOMM '95,
Cambridge, MA, Aug. 28 - Sep. 1, 1995.

[12] D. Cheriton: VMTP: A transport protocol for the next
generation of communication systems. ACM SIGCOMM '87,
Stowe, VT, Aug. 1987.

[13] A. Chien, T. Faber, A. Falk, J. Bannister, R. Grossman, J.
Leigh: Transport protocols for high performance: Whither
TCP?, Communications of the ACM, Volume 46, Issue 11,
November, 2003, pages 42-49.

[14] J. Chu: Zero-copy TCP in Solaris. Proc. USENIX Annual
Conference '96, San Diego, CA, Jan. 1996.

[15] D. Clark, M. Lambert, and L. Zhang: NETBLT: A high
throughput transport protocol. ACM SIGCOMM '87, Stowe,
VT, Aug. 1987.

[16] D. Clark and D. Tennenhouse: Architectural considerations
for a new generation of protocols. ACM SIGCOMM '90,
Philadelphia, PA, Sep. 24-27, 1990.

[17] Tom DeFanti, Cees de Laat, Joe Mambretti, Kees Neggers,
Bill St. Arnaud: TransLight: a global-scale Lambda Grid for
e-science. Communications of the ACM, Volume 46, Issue
11, (November 2003), Pages: 34 - 41.

[18] Phillip M. Dickens: FOBS: A lightweight communication
protocol for grid computing. Euro-Par 2003: 938-946.

[19] C. Dovrolis, P. Ramanathan, D. Moore: What do packet
dispersion techniques measure? Proc. IEEE Infocom, April
2001.

[20] A. Edwards and S. Muir: Experiences implementing a high-
performance TCP In user-space. Proc. ACM SIGCOMM
1995, Cambridge, MA, pages 196 - 205.

[21] David Ely, Stefan Savage, and David Wetherall: Alpine: A
user-level infrastructure for network protocol development.
Proc. 3rd USENIX Symposium on Internet Technologies and
Systems (USITS 2001), pages 171-183, March 2001.

[22] W. Feng and P. Tinnakornsrisuphap: The failure of TCP in
high-performance computational grids. SC '00, Dallas, TX,
Nov. 4 - 10, 2000.

[23] S. Floyd: HighSpeed TCP for large congestion windows.
IETF, RFC 3649, Experimental Standard, Dec. 2003.

[24] S. Floyd, H. Henderson: The NewReno modification to
TCP's fast recovery algorithm, RFC 2582, IETF, 1999.

[25] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti,
and S. Mascolo: TCP Westwood: Congestion window
control using bandwidth estimation. IEEE Globecom 2001,
Volume: 3, pp 1698-1702.

[26] Yunhong Gu and R. L. Grossman: SABUL: A transport
protocol for grid computing. Journal of Grid Computing,
2003, Volume 1, Issue 4, pp. 377-386.

[27] Yunhong Gu, Xinwei Hong, and Robert Grossman: An
Analysis of AIMD Algorithms with Decreasing Increases.
Gridnets 2004, First Workshop on Networks for Grid
Applications, Oct. 29, San Jose, CA, USA.

[28] Yunhong Gu, Xinwei Hong, and Robert Grossman:
Experiences in design and implementation of a high
performance transport protocol. SC 2004, Nov 6 - 12,
Pittsburgh, PA, USA.

[29] Yunhong Gu and Robert L. Grossman: Optimizing UDP-
Based Protocol Implementations. Proceedings of the Third
International Workshop on Protocols for Fast Long-Distance
Networks (PFLDnet 2005), Feb 3 – 4, 2005, Lyon, France.

[30] Yunhong Gu and Robert L. Grossman: Supporting
Configurable Congestion Control in Data Transport Services.
SC 05, Nov 12 – 18, 2005, Seattle, WA, USA.

[31] Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau: Deploying safe user-level network services
with icTCP. OSDI 2004.

[32] Sangtae Ha, Yusung Kim, Long Le, Injong Rhee and Lisong
Xu: A Step toward Realistic Performance Evaluation of
High-Speed TCP Variants. PFLDNet 2006, Nara, Japan.

[33] E. He, J. Leigh, O. Yu, T. A. DeFanti: Reliable Blast UDP:
Predictable high performance bulk data transfer. IEEE
Cluster Computing 2002, Chicago, IL 09/01/2002.

[34] N. C. Hutchinson and L. L. Peterson: The x-Kernel: An
architecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1): 64-76, Jan.
1991.

[35] R. Jain: The art of computer systems performance analysis:
Techniques for experimental design, measurement,
simulation, and modeling. Wiley- Interscience, New York,
NY, April 1991.

[36] N. Jain, M. Schawrtz, T. Bashkow: Transport protocol
processing at GBPS rates. SIGCOMM '90, Philadelphia, PA,
Sep. 24-27, 1990.

[37] C. Jin, D. X. Wei, and S. H. Low: FAST TCP: motivation,
architecture, algorithms, performance. IEEE Infocom '04,
Hongkong, China, Mar. 2004.

[38] P. Joubert, R. King, R. Neves, M. Russinovich, and J.
Tracey: High-performance memory-based web servers:
Kernel and user-space performance. USENIX '01, Boston,
Massachusetts, June 2001.

[39] D. Katabi, M. Hardley, and C. Rohrs: Internet congestion
control for future high bandwidth-delay product
environments. ACM SIGCOMM '02, Pittsburgh, PA, Aug. 19
- 23, 2002.

[40] T. Kelly: Scalable TCP: Improving performance in
highspeed wide area networks. ACM Computer
Communication Review, Apr. 2003.

[41] Eddie Kohler, Mark Handley, Sally Floyd, Jitendra Padhye:
Datagram congestion control protocol (DCCP),
http://www.icir.org/kohler/dcp/. Jan. 2005.

18

[42] K. Kumazoe, Y. Hori, M. Tsuru, and Y. Oie: Transport
protocol for fast long distance networks: Comparison of their
performances in JGN. SAINT '04, Tokyo, Japan, 26 - 30 Jan.
2004.

[43] Kazumi Kumazoe, Katsushi Kouyama, Yoshiaki Hori,
Masato Tsuru, Yuji Oie: Transport protocol for fast long-
distance networks : Evaluation of penetration and robustness
on JGNII. The 3rd International Workshop on Protocols for
Fast Long-Distance Networks, (PFLDnet 05), Lyon, France,
Feb. 2005.

[44] Kevin Lai, Mary Baker: Measuring link bandwidths using a
deterministic model of packet delay. SIGCOMM 2000, pp.
283-294.

[45] S. Leue and P. Oechslin: On parallelizing and optimizing the
implementation of communication protocols. IEEE/ACM
Transactions on Networking 4(1): 55-70 (1996).

[46] Kieran Mansley: Engineering a user-level TCP for the
CLAN network. SIGCOMM 2003 workshop on Network-I/O
convergence: experience, lessons, and implications.

[47] M. Mathis, J. Heffner, and R. Reddy: Web100: Extended
TCP instrumentation for research, education and diagnosis,
ACM Computer Communications Review, Vol 33, Num 3,
July 2003.

[48] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and
Teunis Ott: The Macroscopic behavior of the congestion
avoidance algorithm. Computer Communications Review,
volume 27, number 3, July 1997.

[49] Parveen Patel, Andrew Whitaker, David Wetherall, Jay
Lepreau, and Tim Stack: Upgrading transport protocols using
untrusted mobile code. Proc. the 19th ACM Symposium on
Operating System Principles, October 19-22, 2003.

[50] V. Paxson: End-to-end Internet packet dynamics. IEEE/ACM
Transactions on Networking, Vol.7, No.3, pp. 277-292, June
1999.

[51] V. Paxson and M. Allman: Computing TCP's retransmission
timer. IETF RFC 2988, Nov. 2000.

[52] Ravi Prasad, Manish Jain and Constantinos Dovrolis: Effects
of interrupt coalescence on network measurements.
PAM2004, Antibes Juan-les-Pins, France, April 19-20, 2004.

[53] Injong Rhee and Lisong Xu, CUBIC: A New TCP-Friendly
High-Speed TCP Variants. PFLDnet 2005, Feb. 2005, Lyon,
France.

[54] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-
performance local area communication with fast sockets.
USENIX '97, Anaheim, California, January 6-10, 1997.

[55] R. N. Shorten, D. J. Leith: H-TCP: TCP for high-speed and
long-distance networks. Proc. PFLDNet 2004, Argonne, IL,
2004.

[56] H. Sivakumar, S. Bailey, R. L. Grossman. PSockets: The
case for application-level network striping for data intensive
applications using high speed wide area networks. SC '00,
Dallas, TX, Nov. 2000.

[57] R. Srikant: The mathematics of Internet congestion control.
Birkhauser, 2004.

[58] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson: Stream control transmission protocol. IETF RFC
2960, Oct. 2000.

[59] T. Strayer, B. Dempsey, and A. Weaver: XTP – the Xpress
Transfer Protocol. Addison-Wesley Publishing Company,
1992.

[60] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska:
Implementing network protocols at user level, IEEE/ACM
Transactions on Networking, 1(5): 554--565, October 1993.

[61] M. Veeraraghavan, X. Zheng, H. Lee, M. Gardner, W. Feng:
CHEETAH: Circuit-switched high-speed end-to-end
transport architecture. Proc. of Opticomm 2003, Oct. 13-17,
2003. Dallas, TX.

[62] Gary T. Wong, Matti A. Hiltunen, and Richard D.
Schlichting: A configurable and extensible transport
protocol. IEEE Infocom 2001, April 22-26, 2001. Anchorage,
Alaska, April 2001.

[63] Ryan Wu and Andrew Chien: GTP: Group transport protocol
for lambda-grids. Proc. the 4th IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid2004), Chicago, Illinois, April 2004.

[64] Xinran Wu, Andrew A. Chien, Matti A. Hiltunen, Richard D.
Schlichting, and Subhabrata Sen: High performance
configurable transport protocol for grid computing. Proc. the
5th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2005).

[65] Qishi Wu, Nageswara S. V. Rao: Protocol for high-speed
data transport over dedicated channels. Third International
Workshop on Protocols for Long-Distance Networks
(PFLDnet 2005), Lyon, France, Feb. 2005.

[66] C. Xiong, Leigh, J., He, E., Vishwanath, V., Murata, T.,
Renambot, L., DeFanti, T.: LambdaStream - a data transport
protocol for streaming network-intensive applications over
photonic networks. Third International Workshop on
Protocols for Long-Distance Networks (PFLDnet 2005),
Lyon, France, Feb. 2005.

[67] L. Xu, K. Harfoush, and I. Rhee: Binary increase congestion
control for fast long-distance networks. IEEE Infocom '04,
Hongkong, China, Mar. 2004.

[68] Lixia Zhang, Scott Shenker, David D. Clark: Observations
on the dynamics of a congestion control algorithm: The
Effects of two-way traffic. ACK SIGCOMM 1991, pp. 133-
147.

[69] M. Zhang, B. Karp, S. Floyd, and L. Peterson: RR-TCP: A
reordering-robust TCP with DSACK. Proc. the Eleventh
IEEE International Conference on Networking Protocols
(ICNP 2003), Atlanta, GA, November 2003.

[70] Y. Zhang, E. Yan, and S. K. Dao: A measurement of TCP
over long-delay network. The 6th International Conference
on Telecommunication Systems, Modeling and Analysis,
Nashville, TN, March 1998.

[71] X. Zheng, A. P. Mudambi, and M. Veeraraghavan: FRTP:
Fixed rate transport protocol -- A modified version of
SABUL for end-to-end circuits. Pathnets2004 on
Broadnet2004, Sept. 2004, San Jose, CA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

