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Abstract 
 
In this paper, we summarize our work on the UDT high performance data transport protocol over the past four years. UDT was designed 
to effectively utilize the rapidly emerging high-speed wide area optical networks. It is built on top of UDP with reliability control and 
congestion control, which makes it quite easy to install. The congestion control algorithm is the major internal functionality to enable 
UDT to effectively utilize high bandwidth. Meanwhile, we also implemented a set of APIs to support easy application implementation, 
including both reliable data streaming and partial reliable messaging. The original UDT library has also been extended to Composable 
UDT, which can support various congestion control algorithms. We will describe in detail the design and implementation of UDT, the 
UDT congestion control algorithm, Composable UDT, and the performance evaluation. 
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1. INTRODUCTION 
The rapid increase of network bandwidth and the emergence of 
new distributed applications are the two driving forces for 
networking research and development. On the one hand, network 
bandwidth today has been expanded to 10Gb/s with 100Gb/s 
emerging, which enables many data intensive applications that 
were impossible in the past. On the other hand, new applications, 
such as scientific data distribution, expedite the deployment of 
high-speed wide-area networks. 
Today, national or international high-speed networks have 
connected most developed regions in the world with fiber [13, 
17]. Data can be moved at up to 10 Gb/s among these networks 
and often at a higher speed inside the networks themselves. For 
example, in the United States, there are national multi-10Gb/s 
networks, such as National Lambda Rail, Internet2/Abilene, 
Teragrid, ESNet, etc. They can connect to many international 
networks such as CA*Net 4 of Canada, SurfNet of the 
Netherlands, and JGN2 of Japan. 
Meanwhile, we are living in a world of exponentially increasing 

data. The old way of storing data in disk or tape storage and 
delivering them manually by transport vehicles is no longer 
efficient. In many situations, the old fashioned method of 
shipping disks with data on them makes it impossible to meet the 
applications' requirements (e.g., online data analysis and 
processing). 
Researchers in high-energy physics, astronomy, earth science, and 
other high performance computing areas have started to use these 
high-speed wide area optical networks to transfer terabytes of 
data. We expect that home Internet users will also be able to make 
use of the high-speed networks in the near future for applications 
with high-resolution streaming video, for example. In fact, an 
experiment between two ISPs in the USA and Korea has 
demonstrated an effective 80Mb/s data transfer speed. 
Unfortunately, high-speed networks have not been efficiently 
used by applications with large amounts of data. The 
Transmission Control Protocol (TCP), the de facto transport 
protocol of the Internet, substantially underutilizes network 
bandwidth over high-speed connections with long delays [13, 22, 
39, 70]. For example, a single TCP flow with default parameter 
settings on Linux 2.4 can only reach about 5 Mb/s over a 1Gb/s 
link between Chicago and Amsterdam; with careful parameter 
tuning the throughput still only reaches about 70Mb/s. A new 
transport protocol is required to address this challenge. The new 
protocol is expected to be easily deployed and easily integrated 
with the applications, in addition to utilizing the bandwidth 
efficiently and fairly. 

 

This paper is partly based upon five conference papers published on the 
proceedings of PFLDNet workshop 2003 and 2004, IEEE GridNets 
workshop 2004, and IEEE/ACM SC conference 2004 and 2005. See 
reference [26, 27, 28. 29, 30]. 
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Network researchers have proposed quite a few solutions to this 
problem, most of which are new TCP congestion control 
algorithms [8, 23, 25, 37, 40, 53, 55, 67] and application-level 
libraries using UDP [18, 26, 61, 65, 66, 71]. Parallel TCP [1, 56] 
and XCP [39] are two special cases: the former tries to start 
multiple concurrent TCP flows to obtain more bandwidth, 
whereas the latter represents a radical change by introducing a 
new transport layer protocol involving changes in routers. 
In UDT we have a unique approach to address the problem of 
transferring large volumetric datasets over high bandwidth-delay 
product (BDP) networks. While UDT is a UDP-based approach, 
to the best of our knowledge, it is the only UDP-based protocol 
that employs a congestion control algorithm targeting shared 
networks. Furthermore, UDT is not only a new control algorithm, 
but also a new application level protocol with support for user 
configurable control algorithms and more powerful APIs. 
This paper summarizes our work on UDT over the past four years. 
Section 2 gives an overview of the UDT protocol and describes its 
design and implementation. Section 3 explains its congestion 
control algorithm. Section 4 introduces Composable UDT that 
supports configurability of congestion control algorithms. Section 
5 gives an experimental evaluation of the UDT performance. 
Section 6 concludes the paper. 

2. THE UDT PROTOCOL 
2.1 Overview 
UDT adapts itself into the layered network protocol architecture 
(Figure 1). UDT uses UDP through the socket interface provided 
by operating systems. Meanwhile, it provides a UDT socket 
interface to applications. Applications can call the UDT socket 
API in the same way they call the system socket API. An 
application can also provide a congestion control class instance 
(CC in Figure 1) for UDT to process the control events, thus a 
customized congestion control scheme will be used, otherwise the 
default congestion control algorithm of UDT will be used. 
 

UDP

OS Socket Interface

UDT

UDT Socket

Application CC

 
Figure 1: UDT in the Layer Architecture. UDT is in the 
application layer above UDP. The application exchanges its data 
through UDT socket, which then uses UDP socket to send or 
receive the data. Memory copy is bypassed between UDT socket 
and UDP socket, in order to reduce processing time. The 
application can also provide a customized control scheme (CC). 
 

UDT addresses two orthogonal research problems: 1) the design 
and implementation of a transport protocol with respect to 
functionality and efficiency, and 2) an Internet congestion control 
algorithm with respect to efficiency, fairness, and stability. 
In this section, we will describe the design and implementation of 
the UDT protocol (Problem 1). The congestion control algorithm 
and the Composable UDT (Problem 2) will be introduced in 
Section 3 and Section 4, respectively. 

2.2 Protocol Design 
UDT is a connection-oriented duplex protocol. It supports both 
reliable data streaming and partial reliable messaging. 
Figure 2 describes the relationship between the UDT sender and 
the receiver. In Figure 2, the UDT entity A sends application data 
to the UDT entity B. The data is sent from A’s sender to B’s 
receiver, whereas the control flow is exchanged between the two 
receivers. 
 

 
Figure 2: Relationship between UDT sender and receiver. All 
UDT entities have the same architectures, each having both a 
sender and a receiver. This figure demonstrates the situation 
when a UDT entity A sends data to another UDT entity B. Data is 
transferred from A’s sender to B’s receiver, whereas control 
information is exchanged between the two receivers. 
 
The receiver is also responsible for triggering and processing all 
control events, including congestion control and reliability 
control, and their related mechanisms as well. 
UDT uses rate-based congestion control (rate control) and 
window-based flow control to regulate the outgoing data traffic. 
Rate control updates the packet-sending period every constant 
interval, whereas flow control updates the flow window size each 
time an acknowledgment packet is received. 

2.2.1 Packet Structures 
There are two kinds of packets in UDT: the data packets and the 
control packets. They are distinguished by the 1st bit (flag bit) of 
the packet header. 
A UDT data packet contains a packet-based sequence number, a 
message sequence number, and a relative timestamp (which starts 
counting once the connection is set up, in microseconds) (Figure 
3), in addition to the UDP header information. 
Note that UDT’s packet-based sequencing with the packet size 
information provided by UDP is equivalent to TCP’s byte-based 
sequencing and can also support data streaming. Meanwhile, the 
message sequence number is only used for messaging services. 
The message number field indicates which packets consist of a 
particular application message. A message may contain one or 
more packets. The "FF" filed indicates the message boundary: 
first packet – 10, last packet – 01, and solo packet – 11. The "O" 
field indicates if this message should be delivered in order. In-
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order delivery means that the message cannot be delivered until 
all messages prior to it are either delivered or dropped. 
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Figure 3: UDT packet header structures. The first bit of the 
packet header is a flag to indicate if this is a data packet (0) or a 
control packet (1). Data packets contain a 31-bit sequence 
number, a 29-bit message number, and a 32-bit timestamp. In the 
control packet header, bit 1- 15 is the packet type information and 
bit 16 –31 can be used for user-defined types. The detailed 
control information depends on the packet type. 
 
There are 7 types of control packets in UDT and the type 
information is put in bit field 1 - 15 of the packet header. The 
contents of the following fields depend on the packet type. The 
first three 32-bit fields must exist in the packet header, whereas 
there may be an empty control information field, depending on 
the packet type. 
Specifically, UDT uses sub-sequencing for ACK packets. Each 
ACK packet is assigned a unique increasing 31-bit sequence 
number, which is independent of the data packet sequence 
number. 
The 7 types of control packets are: handshake (connection setup 
information), ACK (acknowledgment), ACK2 (acknowledgment 
of acknowledgment), NAK (negative acknowledgment, or loss 
report), keep-alive, shutdown, and message drop request. 
The extended type field is reserved for users to define their own 
control packets in the Composable UDT framework (Section 4). 

2.2.2 Connection Setup and Teardown 
UDT supports two kinds of connection setup, traditional 
client/server mode and rendezvous mode. 
In the client/server mode, one UDT entity starts first as the server, 
and its peer side (the client) that wants to connect to it will send a 
handshake packet first. The client should keep on sending the 
handshake packet every constant interval (the implementation 
should decide this interval according to the balance between 
response time and system overhead) until it receives a response 
handshake from the server or a time-out timer expires. 
The handshake packet has the following information: 1) UDT 
version, 2) socket type (SOCK_STREAM or SOCK_DGRAM), 

3) initial random sequence number, 4) maximum packet size, and 
5) maximum flow window size. 
The server, when receiving a handshake packet, checks its version 
and socket type. If the request has the same version and type, it 
compares the packet size with its own value and sets its own 
value as the smaller one. The result value is also sent back to the 
client by a response handshake packet, together with the server's 
initial sequence number and maximum flow window size. The 
server is ready for sending/receiving data right after this step. 
However, it must send back a response packet as long as it 
receives any further handshakes from the same client, in case the 
client does not receive the previous response. 
The client can start sending/receiving data once it gets a response 
handshake packet from the server. Further response handshake 
messages, if any are received, should be omitted. 
A traditional client/server setup process requires that a server be 
started first and then a client side to it. However, this mechanism 
does not work if both of the machines are behind firewalls, when 
the connection setup request from the client side will be dropped. 
In order to support convenient connection setup in this situation, 
UDT provides the rendezvous connection setup mode, in which 
there is no server or client, and two users can connect to each 
other directly. 
Inside the UDT implementation of the rendezvous connection 
setup, each UDT socket sends a connection request to its peer 
side, and whoever receives the request will then send back a 
response and set up the connection. 
If one of the connected UDT entities is being closed, it will send a 
shutdown message to the peer side. The peer side, after receiving 
this message, will also be closed. This shutdown message, 
delivered using UDP, is only sent once and not guaranteed to be 
received. If the message is not received, the peer side will be 
closed by a timeout mechanism (through the keep-alive packets). 
Keep-alive packets are generated periodically if there is no other 
data or control packets sent to the peer side. A UDT entity can 
detect a broken connection if it does not receive any packets in a 
certain predetermined time. 

2.2.3 Reliability Control / Acknowledging 
Acknowledgment is used in UDT for congestion control and data 
reliability. In high-speed networks, generating and processing 
acknowledgments for every received packet may take a 
substantial amount of time. Meanwhile, acknowledgment itself 
also consumes some bandwidth. (This problem is more serious if 
the gateway queues use packets rather than bytes as the minimum 
processing unit, which is very common today.) 
UDT uses timer-based selective acknowledgment, which 
generates an acknowledgment at a fixed interval, if there are new 
continuously received data packets. This means that the faster the 
transfer speed, the smaller the ratio of bandwidth consumed by 
control traffic. Meanwhile, at very low bandwidth, UDT acts like 
protocols that acknowledge every data packet. 
UDT uses ACK sub-sequencing to avoid sending repeated ACKs 
as well as to calculate RTT. An ACK2 packet is generated each 
time an ACK is received. When the receiver side gets this ACK2, 
it learns that the related ACK has reached its destination and only 
a larger ACK will be sent later. Furthermore, the UDT receiver 
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can also use the departure time of the ACK and the arrival time of 
the ACK2 to calculate RTT. 
Note that it is not necessary to generate an ACK2 for every ACK 
packet. Furthermore, an implementation can generates more light 
ACKs to help synchronize the packet sending (self-clocking) but 
these light ACKs will not change the protocol buffer status in 
order to reduce the processing time. 
The ACK interval of UDT is 0.01 seconds, which means that a 
UDT receiver will generate 1 acknowledgment per 833 1500-byte 
packets at 1 Gb/s data transfer speed. 
To support this scheme, negative acknowledgment (NAK) is used 
to explicitly feed back packet loss. NAK is generated once a loss 
is detected so that the sender can react to congestion as quickly as 
possible. The loss information (sequence numbers of lost packets) 
will be resent after an increasing interval if there are timeouts 
indicating that the retransmission or NAK itself has been lost. By 
informing the sender of explicit loss information, UDT provides a 
similar mechanism to TCP SACK, but the NAK packet can bring 
more information than the TCP SACK field. 
In partial reliability messaging mode, the sender assigns each 
outbound message a timestamp. If the TTL of a message expires 
by the time a packet of this message is to be sent or retransmitted, 
the sender will send a message drop request to the receiver. The 
receiver, upon receiving the drop request, will regard all packets 
in the message as having been received and mark that message as 
dropped. 

2.3 Implementation 
Figure 4 depicts the UDT software architecture. The UDT layer 
has five function components: the API module, the sender, the 
receiver, the listener, and the UDP channel, as well as four data 
components: sender’s protocol buffer, receiver’s protocol buffer, 
sender’s loss list, and receiver’s loss list. 
Because UDT is bi-directional, all UDT entities have the same 
structure. The sender and receiver in Figure 4 have the same 
relationship as that in Figure 2. 
The API module is responsible for interacting with applications. 
The data to be sent is passed to the sender's buffer and sent out by 
the sender into the UDP channel. At the other side of the 
connection (not shown in this figure but it has the same 
architecture), the receiver reads data from the UDP channel into 
the receiver's buffer, reorders the data, and checks packet losses. 
Applications can read the received data from the receiver's buffer. 
The receiver also processes received control information. It will 
update the sender's loss list (when NAK is received) and the 
receiver's loss list (when loss is detected). Certain control events 
will trigger the receiver to update the congestion control module, 
which is in charge of the sender’s packet sending. 
The UDT socket options are passed to the sender/receiver 
(synchronization mode), the buffer management modules (buffer 
size), the UDP channel (UDP socket option), the listener 
(backlog), and CC (the congestion control algorithm, which is 
only used in Composable UDT). Options can also be read from 
these modules and provided to applications by the API module. 
Many implementation issues arise during the development of 
UDT. Most of them can be applied to general protocol 
implementation. The details can be found in [28]. 

 
Figure 4: Software Architecture of the UDT implementation. 
The solid line represents the data flow, and the dashed line 
represents the control flow. The shading blocks (buffers and loss 
lists) are the four data components, whereas the blank blocks 
(API, UDP channel, sender, receiver, and listener) are function 
components. 

2.4 Application Programming Interface 
The API (application programming interface) is an important 
consideration when implementing a transport protocol. Generally, 
it is a good practice to comply with the BSD socket semantics. 
However, due to the special requirements and use scenarios in 
high performance applications, additional modifications to the 
original socket API are necessary. 

File transfer API. In the past several years, network 
programmers have welcomed the new sendfile method [38]. It is 
also an important method in data intensive applications, as these 
are often involved with disk-network IO. In addition to sendfile, a 
new recvfile method is also added, to receive data directly onto 
disk. The sendfile/recvfile interfaces and send/recv interfaces are 
orthogonal. 

Overlapped IO. UDT also implements overlapped IO at both the 
sender and the receiver sides. Related functions and parameters 
are added into the API. Overlapped IO is an effective method to 
reduce memory copies [28]. 

Messaging with partial reliability. Streaming data transfer does 
not cover requirements from all applications. There are 
applications that are more concerned with the delay of message 
delivery than the reliability of delivery. Such requirements have 
been addressed in other protocols such as SCTP [58]. UDT 
provides a high performance version of data messaging with 
partial reliability. 
When a UDT socket is created as SOCK_STREAM socket, the 
data streaming mode is used; when it is created as a 
SOCK_DGRAM socket, the data messaging mode is used. For 
each single message, an application can specify two parameters: 
the time-to-live (TTL) value and a boolean flag to indicate 
whether the message should be delivered in order. Once the TTL 
expires, a message will be removed from the sending queue even 
if the sending is not finished. A negative TTL value means that 
the message will be guaranteed for reliable delivery. 
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Rendezvous Connection Setup. UDT provides a convenient 
rendezvous connection setup to traverse firewalls. In rendezvous 
setup, both peers connect to each other's known port at the same 
time. 
An application can make use of the UDT library in three ways. 
The library provides a set of C++ API that is very similar to the 
system socket API. Network programmers can learn it easily and 
use it like TCP sockets. 
When used in applications written by languages other than 
C/C++, an API wrapper can be used. So far, both Java and Python 
UDT API wrappers have been developed. 
Certain applications have a data transport middleware to make use 
of multiple transport protocols. In this situation, a new UDT 
driver can be added to this middleware, and then used by the 
applications transparently. For example, a UDT XIO driver has 
been developed so that the library can be used in Globus 
applications seamlessly. 

3. CONGESTION CONTROL 

3.1 The DAIMD and UDT Algorithm 
We consider a general class of the following AIMD (additive 
increase multiplicative decrease) rate control algorithm: 
For every rate control interval, if there is no negative feedback 
from the receiver (loss, increasing delay, etc.), but there are 
positive feedbacks (acknowledgments), then the packet-sending 
rate (x) is increased by α(x). 

)(xxx α+←     (1) 

α(x) is non-increasing and it approaches 0 as x increases, i.e., 
0)(lim =+∞>− xx α . 

For any negative feedback, the sending rate is decreased by a 
constant factor β (0 < β <1): 

xx ⋅−← )1( β     (2) 

Note that formula (1) is based on a fixed control interval, e.g., the 
network round trip time (RTT). This is different from TCP 
control, in which every acknowledgment triggers an increase. 

By varying α(x), we can get a class of rate control algorithm that 
we name the DAIMD algorithm (AIMD with decreasing 
increases), because the additive parameter is decreasing. Using 
the strategies of [57], we can show that this approach is globally 
asynchronously stable and will converge to fairness equilibrium. 
Detailed proof can be found in [27]. 

In addition to stability and fairness, the function of α(x) has to be 
large around α(0) to be efficient and it has to decrease quickly to 
reduce oscillations. 

UDT adopts this efficiency idea and specifies a piecewise a(x) 
that is related to the link capacity. The fixed rate control interval 
of UDT is SYN, or the synchronization time interval, which is 
0.01 second. UDT rate control is a special DAIMD algorithm by 
specifying a(x) as: 

⎡ ⎤

SYNS
x xCL 1150010)( ))(log( ⋅×= −− τα   (3) 

In formula (3), x has the unit of packets/second. L is the link 
capacity measured by bits/second. S is the UDT packet size (in 
terms of IP payload) in bytes. C(x) is a function that converts the 
unit of the current sending rate x from packets/second to 
bits/second (C(x) = x * S * 8). τ is a protocol parameter, which is 
9 in the current protocol specification. 
The factor of (1500/S) in function (3) is to balance the impact of 
flows with different packet sizes. UDT treats 1500 bytes as a 
standard packet size. 

Table 1 gives an example of how UDT increases its sending rate 
under different situations. In this example, we assume all packets 
are in 1500 bytes. 

 
Table 1: UDT increase parameter computation example. The 
first column represents the estimated available bandwidth and the 
second column represents the increase in packets per SYN. While 
the available bandwidth increases to the next scope of 10's 
integral power, the increase parameter also increases by 10 
times. 
 

B = L - C (Mb/s) inc (packets/SYN) 
B ≤ 0.1 0.00067 
0.1 < B ≤ 1 0.001 
1 < B ≤ 10 0.01 
10 < B ≤ 100 0.1 
100 < B ≤ 1000 1 
… … 

 
The UDT congestion control described above is not enabled until 
the first NAK is received or the flow window has reached the 
maximum size. This is the slow start period of the UDT 
congestion control. During this time the inter-packet time is kept 
as zero. The initial flow window size is 2 and it is set to the 
number of acknowledged packets each time an ACK is received. 
The slow start only happens at the beginning of a UDT 
connection, and once the above congestion control scheme is 
enabled, it will not happen again. 

 
Figure 5: Sending rate changes over time. This figure shows 
how the sending rate of a single UDT flow changes over time. 
This is the situation when there is no non-congestion loss and no 
other flows in the system; otherwise there will be oscillations in 
the sending rate. 



6 

Figure 5 shows an illustration of the increase of data sending rate 
of a single UDT flow. At each stage k (k = 0, 1, 2,…), the 
equilibrium can be reached when 0=x& , or intuitively, when the 
increase is balanced off by the decrease. The sending rate at 
equilibrium of stage k is approximately [27]: 

2
9

103*
−+−

⋅=
ek

k p
x    (4) 

where p is the loss rate, and e is a value such that 10e-1 < L ≤ 10e. 
Many characteristics of UDT can be further deduced using 
formula (4). One interesting example is TCP friendliness. By 
comparing (4) against the simple version of the TCP throughput 
model ( RTTp //5.1 ) [48], we can reach a sufficient condition 
to guarantee that UDT is less aggressive than TCP: 

6/10822 ⋅≤⋅ SYNLRTT    (5) 

Condition (5) shows that UDT is very friendly to TCP in low 
BDP environments. In addition, RTT has more impact on TCP 
friendliness than bandwidth. 

3.2 Bandwidth Estimation 
UDT uses receiver-based packet pairs [2] to estimate the link 
capacity L. The UDT sender sends out a packet pair (by omitting 
the inter-packet waiting time) every 16 data packets. Other 
patterns of packet pair or train can also be used because at the 
receiver side, whether the incoming packets consist of a packet 
pair or train can be determined from their timestamp information. 
The receiver records the inter-arrival time of each packet pair or 
train and uses a median filter (more complex mechanisms can be 
found in [44, 50]) on them to compute link capacity. Suppose the 
median inter-arrival time is T and the average packet size in the 
measure period is S, then the link capacity can be estimated by 
S/T. 
There are two major concerns in using packet pairs to estimate 
link capacity. One is the impact of cross traffic [19]. The 
existence of cross traffic can cause the capacity be 
underestimated. The other concern is the NIC interrupt 
coalescence [52]. High speed NICs often have the functionality of 
interrupt coalescence to avoid too frequent interrupts. This can 
cause multiple packet arrivals to be notified by one single 
interrupt and hence the link capacity may be overestimated. This 
error can be eliminated by using the average inter-arrival time of 
multiple packet pairs. 
Nevertheless, estimation error is inevitable in most cases. We 
have seen that UDT may overestimate the capacity when there is 
only one flow in the network, whereas it tends to underestimate 
the capacity when there are multiple flows. For a single flow, 
capacity estimation error only affects the convergence time. For 
multiple flows, it can also affect the fairness. (Note that if all 
flows have the same estimation error, they can still reach 
fairness.) 
One of the important reasons to use a ceiling function in UDT's 
increase formula (3) is to reduce the impact of estimation errors. 
As a simple intuitive example, if two flows share one 100 Mb/s 
link, flow 1 measures the link capacity as 101 Mb/s and flow 2 
measures it as 99 Mb/s, then the two flows will still share the 
bandwidth almost equally. After flow 1 exceeds 1 Mb/s, it will 

enter the same stage as flow 2, and both of the two flows will 
have the same increments and decrements. 

3.3 Dealing with Packet Loss 
While in most loss-based congestion control work, packet loss is 
regarded as a simple congestion indication, few of them have 
investigated the loss pattern in real networks. Because one single 
loss may cause a multiplicative rate decrease, dealing with packet 
loss is very important. 
There are three particular kinds of situations related to packet loss 
that need to be addressed: loss synchronization, non-congestion 
loss, and packet reordering. Loss synchronization is a condition in 
which all concurrent flows experience packet loss at almost the 
same time. Non-congestion loss is usually caused by link error 
and can give transport protocols false signals of network 
congestion. Finally, packet reordering can mislead the receiver as 
packet losses. 
In particular, there has been an effective approach for packet 
reordering [69], so in this subsection we only focus on the first 
two situations, for which the solutions in literatures do not apply 
to UDT. 

3.3.1 Loss Synchronization 
The phenomenon of "loss synchronization" or "global 
synchronization" is the situation when all concurrent flows 
increase and decrease their sending rate at the same time, thus the 
aggregate throughout has a very large oscillation and leads to low 
aggregate utilization of the bandwidth. This is due to the fact that 
almost all the flows will experience packet drops when congestion 
occurs and have to drop their sending; when there is no 
congestion, they all increase the sending rate. 
We use a randomization method to alleviate this problem. To 
describe this method, we define three terms. A loss event is the 
event when packet losses are detected. A UDT sender can detect a 
loss event when it receives a NAK report. A congestion event is a 
particular loss event when the largest sequence number of the lost 
packets in this loss event is greater than the largest sequence 
number that has been sent when the last rate decrease occurred. 
We call the period between two continuous congestion events a 
congestion epoch. Suppose there are M loss events between two 
continuous congestion events, and N is a random number that 
satisfies the uniform distribution between 1 and M. 
For each congestion epoch, the decrease factor of the UDT 
control algorithm is randomized starting from 1/9 to [1 – (8/9)N]. 
Once a NAK is received, if this NAK starts a new congestion 
epoch, i.e., this is a congestion event, the packet-sending period is 
increased by 1/8 (which is equivalent to decreasing the sending 
rate by 1/9), and the packet sending is stopped for the next SYN 
time. For every N loss events, the packet sending period will be 
further increased by another 1/8. 
The process above can be described with the algorithm described 
in Figure 7. In this algorithm, LSD is the largest sequence number 
ever sent when the last NAK is received, STP is the packet 
sending period, NumNAK and AvgNAK are two variables used to 
record the number of NAKs in the current congestion epoch and 
its smooth average value (the M value), and DR is the random 
number between 1 and AvgNAK (the N value). 
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Figure 6: De-synchronization of UDT control algorithm. The 
figure demonstrates the random loss decrease algorithm. In this 
figure, each node is a loss event on the time sequence, whereas a 
congestion epoch is noted as the period between the source and 
the sink of a directional arrow on the time sequence. In this 
example sequence, the first congestion epoch contains 5 loss 
events. 
 

Algorithm: Random Loss Decrease 
1) If the largest lost sequence number in the NAK is greater than 

LSD:  
a) Increase the STP by 1/8: STP = STP * (1 + 1/8).  
b) Update AvgNAK: AvgNAK = (AvgNAK * 7 + NumNAK) / 

8.  
c) Update DR = rand(AvgNAK).  
d) Reset NumNAK = 0;  
e) Record LSD.  

2) Otherwise, increase NumNAK by 1, and if NumNAK % DR = 0:  
a) Increase the STP by 1/8: STP = STP * (1 + 1/8).  
b) Record LSD.  

 

Figure 7: Random loss-based decrease algorithm. 
 
Note that the use of explicit loss report (NAK) is different from 
the use of duplicate ACKs in TCP. With duplicate ACKs, the 
sender may not know all the loss events in one congestion event, 
and usually only the first loss event is detected. In fact, most TCP 
implementations will not drop the sending rate more than once in 
each RTT. However, in UDT, all loss events will be reported by 
NAK. 

3.3.2 Noisy Link 
Loss based control algorithms might not work well if there are 
significant non-congestion packet losses (e.g., due to link error, 
bad behavior of equipments, etc.), because they regard all packet 
losses as due to network congestion and will decrease the data 
sending rate accordingly. Although the link error rate on optical 
links is extremely small, sometimes there are non-congestion 
packet losses due to equipment problems and wrong 
configurations. We use a simple mechanism in UDT to tolerate 
such problems. 
On noisy links, UDT does not react to the first packet loss in a 
congestion event. However, it will decrease the sending rate if 
there is more than one packet loss in one congestion event. This 
scheme is very effective in networks with small non-congestion 
packet losses. Not surprisingly, it also works for light packet 
reordering problems. 
This algorithm is equivalent to removing Step 1.a in the random 
loss decrease algorithm described in Figure 7. 

4. COMPOSABLE UDT 
4.1 Overview 
While UDT has been successful for bulk data transfer over high-
speed networks, we feel that it could have benefited a much 
broader audience. We expanded UDT so that it can be easily 
configurable to satisfy more requirements for both network 
research and application development. We call this Composable 
UDT. 
However, we emphasize here that this framework is not a 
replacement for, but a complement to, the kernel space network 
stacks. General protocols like UDP, TCP, DCCP [41], and SCTP 
[58] should still exist inside the kernel space of operating systems, 
but OS vendors may be reluctant to support too many protocols 
and algorithms, especially those application specific or network 
specific ones. 
Composable UDT supports a wide variety of control algorithms, 
including but not limited to, TCP algorithms (e.g., NewReno [24], 
Vegas [10], FAST [37], Westwood [25], HighSpeed [23], BiC 
[67], and Scalable [40]), bulk data transfer algorithms (e.g., 
SABUL [26], RBUDP [33], LambdaStream [66], CHEETAH 
[61], and Hurricane [65]), and group transport control algorithms 
(e.g., CM [4] and GTP [63]). 
We envision the following use scenarios for Composable UDT: 

• Implementation and deployment of new control algorithms. 
Certain control algorithms may not be appropriate to be 
deployed in kernel space, e.g., a bulk data transfer 
mechanism used only in private links. These algorithms can 
be implemented using Composable UDT. 

• Application awareness support and dynamic configuration. 
An application may choose different congestion control 
strategies under different networks, different users, and even 
different time slots. Composable UDT supports these 
application aware algorithms. 

• Evaluation of new control algorithms. Even if a control 
algorithm is to be deployed in kernel space, it needs to be 
tested thoroughly before OS vendors distribute the new 
version. It is much easier to test the new algorithms using 
Composable UDT than modifying an OS kernel. 

4.2 The CCC Interface 
We identify four categories of configuration features to support 
configurable congestion control mechanisms. They are 1) control 
event handler callbacks, 2) protocol behavior configuration, 3) 
packet extension, and 4) performance monitoring. 

4.2.1 Control Event Callbacks 
Seven basic callback functions are defined in the base CCC class. 
They are called by UDT when a control event is triggered. 

init and close: These two methods are called when a UDT 
connection is set up and when it is torn down. They can be used to 
initialize necessary data structures and release them later. 

onACK: This handler is called when an ACK (acknowledgment) 
is received at the sender side. The sequence number of the 
acknowledged packet can be learned from the parameters of this 
method. 

onLoss: This handler is called when the sender detects a packet 
loss event. The explicit loss information is given to users as the 
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onLoss interface parameters. Note that this method may be 
redundant for most TCP algorithms that use only duplicate ACKs 
to detect packet loss. 

onTimeout: A timeout event can trigger the action defined by this 
handler. The timeout value can be assigned by users, otherwise it 
uses the default value according to the TCP RTO calculation 
described in RFC 2988 [51]. 

onPktSent: This is called right before a data packet is sent. The 
packet information (sequence number, timestamp, size, etc.) is 
available through the parameters of this method. 

onPktReceived: This is called right after a data packet is 
received. Similar to onPktSent, the entire packet information can 
be accessed by users through the function parameters. 
onPktSent and onPktReceived are the two most powerful event 
handlers, because they allow users to check every single data 
packet. For example, onPktReceived can be redefined to compute 
the loss rate in TFRC. Due to the same reason, these two 
callbacks can also allow users to trace the microscopic behavior 
of a protocol. 

processCustomMsg: This method is used for UDT to process 
user-defined control messages. 

4.2.2 Protocol Configuration 
To accommodate certain control algorithms, some of the protocol 
behavior has to be customized. For example, a control algorithm 
may be sensitive to the way that data packets are acknowledged. 
Composable UDT provides necessary protocol configuration APIs 
for these purposes. 
It allows users to define how to acknowledge received packets at 
the receiver side. The functions of setACKTimer and 
setACKInterval determine how often an acknowledgment is sent, 
in elapsed time and the number of arrived packets, respectively. 
The method of sendCustomMsg sends out a user-defined control 
packet to the peer side of a UDT connection, where it is processed 
by callback functions processCustomMsg. 
Finally, Composable UDT also allows users to modify the values 
of RTT and RTO. A new congestion control class can choose to 
use either the RTT value provided by UDT, or its own calculated 
value. Similarly, the RTO value can also be redefined. 

4.2.3 Packet Extension 
It is necessary to allow user-defined control packets for a 
configurable protocol stack. 
Because our Composable UDT library is mainly focused on 
congestion control algorithms, we only give limited customization 
ability to the control packets. Data packet processing contributes 
to a large portion of CPU utilization and customized data packets 
may hurt the performance. 
Users can define their own control packets using the Extended 
Type information in the UDT control packet header (Figure 3). 
The detailed control information carried by these packets varies 
depending on the packet types. At the receiver side, users need to 
override processCustomMsg to tell Composable UDT how to 
process these new types of packets. 

4.2.4 Performance Monitoring 
Protocol performance information supports the decisions and 
diagnosis of a control algorithm. For example, certain algorithms 

need some history information to tune the future packet-sending 
rate. Meanwhile, when testing new algorithms, performance 
statistics and internal protocol parameters are needed. 
The performance monitor provides information including the 
duration time since the connection was started, RTT, sending rate, 
receiving rate, loss rate, packet sending period, congestion 
window size, flow window size, number of ACKs, and number of 
NAKs. UDT records these traces whenever the values are 
changed. 
These performance traces can be read in three categories (when 
applicable): the aggregate values since the connection started, the 
local values since the last time the trace is queried, and the instant 
values when the query is made. 

4.3 Expressiveness 
To evaluate the expressiveness of Composable UDT, we 
implement a set of representative control algorithms using the 
library. Any algorithms belonging to a similar set can be 
implemented in a similar way. Meanwhile, we show that the 
implementation is simple and easy to learn. 
In this section, we describe in detail how to implement control 
algorithms of rate based UDP, TCP variants, including both loss-
based and delay-based algorithms, and group transport protocols 
as well. 
Composable UDT uses an object-oriented design. It provides a 
base C++ class (CCC) that contains all the functions and event 
handlers described in Section 4.2.1. A new control algorithm can 
inherit from this class and redefine certain control event handlers. 
The implementation of any control algorithm is to update at least 
one of the two control parameters: the congestion window size 
(m_dCWndSize) and the packet-sending period 
(m_dPacketPeriod), both of which are CCC class member 
variables. 

4.3.1 Rate-based UDP 
A rate-based reliable UDP library (CUDPBlast) is often used to 
transfer bulk data over private links. To implement this control 
mechanism, CUDPBlast initializes the congestion window with a 
very large value so that the window size will not limit the packet 
sending. The rest is to provide a method to assign a data transfer 
rate to a specific CUDPBlast instance. A piece of pseudo code is 
shown below: 

 
class CUDPBlast: public CCC 
{ 
public: 
   CUDPBlast() {m_dCWndSize = 83333.0;} 
 
   void setRate(int mbps) 
   { 
      m_dPktSndPeriod = (SMSS * 8.0) / mbps; 
   } 
} 
 

By using setsockopt an application can assign CUDPBlast to a 
UDT socket and by using getsockopt the application can obtain a 
pointer to the instance of CUDPBlast being used by the UDT 
socket. The application can then call the setRate method of this 
instance to set or modify a fixed sending rate at any time. 
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4.3.2 Standard TCP (TCP NewReno) 
As a more complex example, we further show how to use the 
Composable UDT library to implement the standard TCP 
congestion control algorithm (CTCP). Because a large portion of 
newly proposed congestion control algorithms are TCP-based, 
this CTCP class can be further inherited and redefined to 
implement more TCP variants, which we will describe in the next 
two subsections. 
TCP is a pure window-based control protocol. Therefore, during 
initialization, the inter-packet time is set to zero. In addition, TCP 
needs data packets to be acknowledged frequently, usually every 
one or two packets1. This is also configured in the initialization.  
TCP does not need explicit loss notification, but uses three 
duplicate ACKs to indicate packet loss. Therefore, for congestion 
control, CTCP only redefined two event handlers: onACK and 
onTimeout. In onACK, CTCP detects duplicate ACKs and takes 
proper actions. Here is the pseudo code of the fast retransmit and 
fast recovery algorithm in RFC 2581 [3]: 

 
virtual void onACK(const int& ack) 
{ 
   if (three duplicate ACK detected) 
   { 
      // ssthresh = max{flight_size / 2, 3} 
      // cwnd = ssthresh + 3 * SMSS 
   } 
   else if (further duplicate ACK detected) 
   { 
      // cwnd = cwnd + SMSS 
   } 
   else if (end fast recovery) 
   { 
      // cwnd = ssthresh 
   } 
   else 
   { 
      // cwnd = cwnd + 1/cwnd 
   } 
} 

 
The CTCP implementation can provide more TCP event handlers 
such as DupACKAction and ACKAction, which will further 
reduce the work of implementing new TCP variants. 
Note that here we are only implementing TCP’s congestion 
control algorithm, but NOT the whole TCP protocol. The 
Composable UDT library does not implement exactly the same 
protocol mechanisms as in the TCP specification but it does 
provide similar functionality. For example, TCP uses byte-based 
sequencing whereas UDT uses packet-based sequencing, but this 
should not prevent CTCP from simulating TCP’s congestion 
avoidance behavior. 

4.3.3 New TCP Algorithms (Loss-based) 
New TCP variants that use loss-based approaches usually redefine 
the increase and decrease formulas of the congestion window size. 

                                                                 
1  Although TCP uses accumulative acknowledgments, a TCP 

implementation usually acknowledges at the boundary of a data 
segment. This is equivalent to acknowledging a UDT data 
packet in CTCP. 

Implementations of these protocols can simply inherit from CTCP 
and redefine proper TCP event handlers.  
For example, to implement Scalable TCP, we can simply derive a 
new class from CTCP, and override the actions of increasing (by 
0.01 instead of 1/cwnd) and decreasing (by 1/8 instead of 1/2) the 
congestion window size. 
Similarly, we have also implemented HighSpeed TCP (CHS), BiC 
TCP (CBiC), and TCP Westwood (CWestwood). 

4.3.4 New TCP Algorithms (Delay-based) 
Delay-based algorithms usually need accurate timing information 
for each packet. For efficiency, UDT does not calculate RTT for 
each data packet because it is unnecessary for most control 
algorithms. However, this can be done by overriding onPktSent 
and onACK event handlers, where the time of packet sending and 
the arrival of its acknowledgment can be recorded. For algorithms 
preferring one-way delay (OWD) information, each UDT packet 
contains the sending time in its packet header, and a new 
algorithm can override onPktReceived to calculate OWD. 
Using the strategy described above, we implement the TCP Vegas 
(CVegas) control algorithm. CVegas uses its own data structure to 
record packet departure timestamps and ACK arrival timestamps, 
and then calculates accurate RTT values. With simple 
modifications to the control formulas, we further implement 
FAST TCP (CFAST). 

4.3.5 Group Transport Control 
While we have demonstrated that Composable UDT can be used 
to implement end-to-end unicast congestion control algorithms, 
we now show that it can also be used to implement group-based 
control mechanisms, such as CM and GTP. 
To support this feature, the new algorithm class simply needs to 
implement a central manager to control a group of connections. 
The control parameters are calculated by the central manager and 
then fed back to the control class instance of each individual 
connection. 
We implemented GTP (CGTP) as an example of group-based 
control mechanisms. The GTP protocol controls a group of flows 
with the same destination. CGTP tunes the packet-sending rate at 
the receiver side periodically and feeds back the parameters using 
Composable UDT’s sendCustomMsg method. 

4.3.6 Summary 
We have implemented nine example algorithms using 
Composable UDT, including rate-based reliable UDP, TCP and 
its variants, and group-based protocols. We demonstrated that our 
Composable UDT library can support a large variety of 
congestion control algorithms, which are supported by only 8 
event handlers, 4 protocol control functions, and 1 performance 
monitoring function. 
The concise Composable UDT API is easy to learn. In fact, it 
takes a small piece of code to implement most of the algorithms 
described above. Table 2 lists the lines of code (LOC) of 
implementations of TCP algorithms using Composable UDT, as 
well as the LOC of those native implementations (Linux kernel 
patches). The LOC value is estimated by the number of 
semicolons in the corresponding C/C++ code segment. 
To give more insight into the difference between LOCs in 
Composable UDT based implementations and native 
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implementations, we use the FAST TCP case as an example. The 
31 lines of CFAST only implement the FAST congestion 
avoidance algorithm, whereas much of its code, especially the 
timing part, is inherited from CVegas. In contrast, of the 367 lines 
of FAST TCP patch, 142 of them are used to implement the 
FAST protocol (new files), 81 lines are used to modify the Linux 
TCP files, 86 lines are used to do monitoring and statistics, and 58 
lines are used to do burst control and pacing. 
As a reference point, the UDT library has 3134 lines of effective 
code (i.e., excluding comments, blank lines, etc.), SABUL has 
2670 lines of code, and the RBUDP library has approximately 
2330 lines of code. While these numbers are not enough to reflect 
the complexity of implementing a transport protocol, the much 
smaller number of LOC values of Composable UDT based 
implementation can indicate the simplicity. 
 
Table 2. Lines of code (LOC) of implementations of TCP 
algorithms. This table lists LOC of different TCP algorithms 
implemented using Composable UDT and their respective Linux 
kernel patches (native implementations). The LOC of Linux 
patches include both added lines and removed lines. 

 
Native Protocol Composable 

UDT Added Removed 
TCP 28 -  
Scalable TCP 11 192 29 
HighSpeed TCP 8 27 1 
BiC TCP 38 248 30 
TCP Westwood 27 145 2 
TCP Vegas 37 + 362 132 6 
FAST TCP 31 365 2 

 

CCC

CTCP CGTP CUDPBlast

CScalable CBiC CHS CWestwoodCVegas

CFAST
 

Figure 8: Composable UDT based protocols. This figure shows 
the class inheritance relationship among the control algorithms 
we implemented. Note that this is only for the purpose of code 
reuse, and it does NOT imply any other relationship among these 
algorithms. 
 
To give more insight into the difference between LOCs in 
Composable UDT based implementations and native 
implementations, we use the FAST TCP case as an example. The 
31 lines of CFAST only implement the FAST congestion 
avoidance algorithm, whereas much of its codes, especially the 
timing part, are inherited from CVegas. In contrast, of the 367 

                                                                 
2  CVegas reuses a timing class implemented by UDT, which 

contains 36 lines of code. 

lines of FAST TCP patch, 142 of them are used to implement the 
FAST protocol (new files), 81 lines are used to modify the Linux 
TCP files, 86 lines are used to do monitoring and statistics, and 58 
lines are used to do burst control and pacing. 
The class inheritance relationship of these Composable UDT 
implemented algorithms can be found in Figure 8. Code reuse by 
class inheritance also contributes to the small LOC values of 
those TCP-based algorithms. 

4.4 Similarity 
In most cases, congestion/flow control algorithms are the most 
significant factor that determines a protocol’s performance-related 
behavior (throughput, fairness, and stability). Less significant 
factors include other protocol control mechanisms, such as RTT 
calculation, timeout calculation, acknowledgment interval, etc. 
We have made most of these control mechanisms configurable 
through the CCC interface and the UDT protocol control 
interface. In this subsection we will show that a Composable UDT 
based implementation demonstrates similar performance to a 
native implementation. 
Since TCP is probably the most representative control protocol, 
we compared an application level TCP implementation using our 
Composable UDT library (CTCP) against the standard TCP 
implementation provided by Linux kernel 2.4.18. 
The experiment was performed between two Linux boxes 
between Chicago and Amsterdam. The link is 1 Gb/s with 110 ms 
RTT and was reserved for our experiment only in order to 
eliminate cross traffic noises. Each Linux box has dual Xeon 
2.4GHz processors and was installed with Linux kernel 2.4.18. 
We started multiple TCP and CTCP flows in separate runs, each 
of which was kept running for at least 60 minutes. The total TCP 
buffer size was set to at least the size of BDP (bandwidth delay 
product). Both TCP and CTCP experiments used the same testing 
program (except the connections were TCP and CTCP, 
respectively) with the same configuration (buffer size, etc.). 
We recorded the aggregate throughput (value between 0 and 1000 
Mbps), fairness index (value between 0 and 1), and stability index 
(equal to or greater than 0) in Table 3. The definitions of the 
fairness index and stability index can be found in Section 5. The 
fairness index represents how fairly the bandwidth is shared by 
concurrent flows and larger values are better. The stability index 
describes the oscillations of the flows and smaller values mean 
less oscillation. These three measurements summarize most of the 
performance characteristics of a congestion control algorithm. 
From Table 3, we find that TCP and CTCP have pretty similar 
throughput for small numbers of parallel flows. However, as the 
number of parallelism increases, CTCP stops increasing its 
throughput first and thus has a significantly smaller throughput 
than TCP when there are 64 parallel flows3 . Further analysis 
indicates that the reason for this is that CTCP costs more CPU 
than kernel implemented TCP and with 64 flows the CPU time 
has been used up. To verify this assertion, we started another 
experiment using machines with dual AMD 64-bit Opteron 
processors and this time CTCP reaches more than 900Mbps at 64 
parallel flows. 

                                                                 
3 TCP throughput will also start to decrease as the number of 

parallel flows increases [56]. 
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Table 3: Performance characteristics of TCP and CTCP with 
various parallel flows. The table lists the aggregate throughput 
(in Mb/s), fairness index, and stability index of concurrent TCP 
and CTCP flows. Each row records an independent run with a 
different number of parallel flows. 

 
Throughput Fairness Stability Flow 

# TCP CTCP TCP CTCP TCP CTCP 
1 112 122 1 1 0.517 0.415 
2 191 208 0.997 0.999 0.476 0.426 
4 322 323 0.949 0.999 0.484 0.492 
8 378 422 0.971 0.999 0.633 0.550 
16 672 642 0.958 0.985 0.502 0.482 
32 877 799 0.988 0.997 0.491 0.470 
64 921 716 0.994 0.996 0.569 0.529 

 
In spite of the CPU utilization limitation, both of the 
implementations have similar performance on fairness and 
stability. They both realize good fairness with near-one fairness 
indexes, as the AIMD algorithm indicates. The stability indexes 
are around 0.5 for all runs. 
In addition to the experiments above, we have also tested several 
reliable UDP-based protocols such as UDP Blast (CUDPBlast) to 
examine if the Composable UDT based implementation conforms 
to the protocol’s theoretical performance. We also examined the 
performance of Composable UDT in a real streaming merge 
application, in which the receiver (where data is merged) requests 
an explicit sending rate to the data sources. This service is 
provided by a specific control mechanism implemented using 
Composable UDT. The results of these experiments were positive 
and the expected performance was reached. 

5. PERFORMANCE EVALUATION 
In this section, we evaluate UDT’s performance using several 
experiments on real high-speed networks. While we have also 
done extensive simulations covering the majority of network 
situations, we choose real world experiments here because they 
give us more insight into UDT's performance. 
We use TCP as the baseline to compare against UDT. While there 
are many new protocols and congestion control algorithms, it is 
difficult to choose a mature one as the baseline; complete 
comparison of all these protocols is a relatively complicated 
process and is beyond of the scope of this paper. In fact, there has 
been work to compare some of these protocols [5, 7, 32, 42, 43]. 
In particular, a rather complete experimental comparison on new 
TCP variants can be found in [32]. 

5.1 Evaluation Strategy 
The performance characteristics to be examined include 
efficiency (throughput), intra-protocol fairness, TCP friendliness, 
and stability. We will also evaluate the implementation efficiency 
(CPU usage). 
Efficiency (Throughput). We define the efficiency of UDT as 
the aggregate throughput of all concurrent UDT flows. Efficiency 
is one of the major objectives of UDT, which is supposed to 
utilize the high bandwidth efficiently, that is, utilize as much 
bandwidth as possible. In grid computing, there are usually only a 

small number of bulk data flows sharing the network. A single 
UDT flow should reach high efficiency as well. 
Suppose there are m UDT flows in the network and the i-th flow 
has an average throughout of xi, the efficiency index is defined as 

∑
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Intra-protocol Fairness. The fairness characteristic measures 
how fairly the concurrent UDT flows share the bandwidth. The 
most frequently used fairness rule is the max-min fairness, which 
maximizes the throughput of the poorest flows. If there is only 
one bottleneck in the system, then all the concurrent flows should 
share the bandwidth equally according to the max-min rule. In 
this case, we can use Jain’s fairness index [35] to quantitatively 
measure the fairness characteristics of a transport protocol. 
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where n is the number of concurrent flows and xi is the average 
throughput of the i-th flow. F is always less than or equal to 1. A 
larger value of F means better fairness, and F = 1 is the best, 
which means all flows have equivalent throughput. 

TCP Friendliness. TCP friendliness is rather a more obscure 
measurement than the others, because it is almost impossible for a 
protocol with different control algorithms to reach the same 
performance as TCP's and it is not reasonable to limit the 
throughput of a new protocol in high BDP environments to the 
throughput of TCP while the latter is very inefficient.  
We consider the TCP friendliness separately in different 
situations, which are related to two factors: the network BDP and 
the TCP flow lifetime. First, in low BDP environments, where 
TCP can utilize the bandwidth efficiently, we expect that UDT 
should at least share the bandwidth with TCP fairly (equally); in 
high BDP environments, where TCP cannot efficiently use the 
bandwidth, we expect UDT to make use of the bandwidth that 
TCP fails to use but leave enough space for TCP to increase. 
Second, TCP's behavior can be very different for bulk flows and 
short-lived flows (considering the impact of TCP slow start at the 
beginning of a connection). We consider the situation of short-
lived TCP separately because a majority of TCP traffic over the 
Internet are short-lived flows (e.g., web traffic). 
For bulk TCP flows, suppose there are m UDT and n TCP flows 
coexisting in the network. With the same network configuration, 
we start m+n TCP flows separately. The average throughput for 
the i-th TCP flow in each run is 

ix and iy , respectively. We define 
the TCP friendliness index as: 

∑∑
+

== +
=

nm

i
i

n

i
i y

nm
x

n
T

11

11  

where the denominator is the fair share of TCP. 

T = 1 is the ideal friendliness; T > 1 means UDT is too friendly; 
and T < 1 means UDT overruns TCP. 

For short-lived flows, we will compare the aggregate throughput 
of a large number of small TCP flows under different numbers of 
background bulk UDT flows. 
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Stability (Oscillations). We use the term “stability” in this 
section to describe the oscillation characteristic of a data flow. A 
smooth flow is regarded as desirable behavior for most situations, 
and it often (although not necessarily) leads to better throughput. 
Note that this is different from the meaning of “stable” in control 
theory, and the latter means the convergence to a unique 
equilibrium from any start point. 

To measure oscillations, we have to consider the average 
throughput in each unit time interval (a sample). We use standard 
deviation of the sample values of the throughput of each flow to 
express its oscillation [37]: 
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where n is the number of concurrent flows; m is the number of 
throughput samples for each flow; xi(k) is the k-th sample value of 
flow i; and ix is the average throughput of flow i. 

CPU Usage. CPU usage is usually measured by the usage 
percentage. Note that CPU percentage is system dependable. 
These values are only comparable against those values obtained 
on the same system, or at least systems with the same 
configuration. 

5.2 Efficiency, Fairness, and Stability 
We performed two groups of experiments in different network 
settings to examine UDT’s efficiency, intra-protocol fairness, and 
stability property. 

5.2.1 Case Study 1 
In the first group of experiments, we start three UDT flows from a 
StarLight node to another StarLight local node, a node in Canarie 
(Ottawa, Canada), and a node in SARA (Amsterdam, the 
Netherlands), respectively (Figure 9). All nodes have a 1Gb/s NIC 
and dual Xeon CPU and are installed with Linux 2.4. 
 

1 Gb/s

RTT = 110 ms
Chicago

Ottawa

Amsterdam

Chicago 1 Gb/s
RTT = 40us

 
Figure 9: Experiment network configuration. This figure shows 
the network configuration connecting our machines used for 
testing at Chicago, Ottawa, and Amsterdam. Between any two 
local Chicago machines the RTT is about 40us and the bottleneck 
capacity is 1Gb/s. Between any two machines at Chicago and 
Amsterdam respectively the RTT is 110ms and the bottleneck 
capacity is 1Gb/s. Between any two machines at Chicago and 
Ottawa respectively the RTT is 16ms and the bottleneck capacity 
is 622Mb/s. Amsterdam and Ottawa are connected via Chicago. 
The total bandwidth connecting the Chicago cluster is 1Gb/s. 
 
Figure 10 shows the throughout of the single UDT flow over each 
link when the three flows are started separately. A single UDT 
flow can reach about 940Mbps over 1Gbps link with both 40us 
short RTT and 110ms long RTT. It can reach about 580Mbps over 

an OC-12 link with 15.9ms RTT between Canarie and StarLight. 
In contrast, TCP only reaches about 128 Mb/s from Chicago to 
Amsterdam after a thorough tuning for performance. 
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Figure 10: UDT performance over real high-speed network 
testbeds. This figure shows the throughput of a single UDT flow 
over three different links described in Figure 4-17. The three 
flows are started separately and there is no other traffic during 
the experiment. 
 
Figure 11 shows the throughput when the three flows were started 
at the same time. This experiment demonstrates the fairness 
property among UDT flows with different bottleneck bandwidths 
and RTTs. All the three flows reach about 325 Mb/s. Using the 
same configuration, TCP’s throughputs are 754 Mb/s (to 
Chicago), 151 Mb/s (to Canarie), and 27 Mb/s (to Amsterdam), 
respectively. 
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Figure 11: UDT fairness in real networks. This figure shows the 
throughputs of 3 concurrent UDT flows over the different links 
described in Figure 10. No other traffic exists during the 
experiment. The sub-figure below is a local expansion of the sub-
figure above. 
 

5.2.2 Case Study 2 
We set up another experiment to check the efficiency, fairness, 
and stability performance of UDT at the same time. The network 
configuration is shown in Figure 12. Two sites, StarLight 
(Chicago) and SARA (Amsterdam), are connected with 1 Gb/s 
link. At each site, four nodes are connected to the gateway switch 
through 1GigE NIC. The RTT between the two sites is 104ms. All 
nodes run Linux 2.4.19 SMP on machines with dual Intel Xeon 
2.4GHz CPUs. 
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Figure 12: Fairness testing configuration. This figure shows the 
network topology used in UDT experiments. Four pairs of nodes 
share 1 Gb/s, 104 ms RTT link connecting two clusters at Chicago 
and Amsterdam, respectively. 

 
For the four pairs of nodes, we start a UDT flow every 100 
seconds, and stop each of them in the reverse order every 100 
seconds, as depicted in Figure 13. 
 

 
Figure 13: Flow start and stop configuration. This figure shows 
the UDT flow start/termination sequence in an experiment 
configuration. There are 4 UDT flows and each flow is started 
every 100 seconds, and stopped in the reverse order every 100 
seconds. The lifetime of each flow is 100, 300, 500, and 700 
seconds, respectively. 
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Figure 14: UDT efficiency and fairness. This figure shows the 
throughput of the 4 UDT flows in Figure 13 over the network in 
Figure 12. The highest line is the aggregate throughput. 

 
The results are shown in Figure 14 and Table 4. Figure 14 shows 
the detailed performance of each flow and the aggregate 
throughput. Table 4 lists the average throughput of each flow, the 
average RTT and loss rate at each stage, the efficiency index (EI), 
the fairness index (FI), and the stability index (SI). 
All stages achieve good bandwidth utilization. The maximum 
possible bandwidth is about 940 Mb/s on the link, measured by 
other benchmark software. The fairness among concurrent UDT 
flows is very close to 1. The stability index values are very small, 
which means the sending rate is very stable (few oscillations). 
Furthermore, UDT causes little increase in the RTT (107 ms vs. 
104 ms) and a very small loss rate (no more than 0.1%). 

 

Table 4: Concurrent UDT flow experiment results. This table 
lists the per-flow throughput, end-to-end experienced RTT, 
overall loss rate, the efficiency index, the fairness index, and the 
stability index of the experiment of Figure 14. 
 
Time 
(sec) 

1 - 
100 

101 - 
200 

201 - 
300 

301 - 
400 

401 - 
500 

501 - 
600 

601 - 
700 

Flow1 902 466 313 215 301 452 885 
Flow2  446 308 216 310 452  
Flow3   302 202 307   
Flow4    197    
RTT 106 106 106 106 107 105 105 
Loss 0 10-6 10-4 10-3 10-3 0 10-6 
EI 902 912 923 830 918 904 885 
FI 1 .999 .999 .998 .999 1 1 
SI 0.11 0.11 0.08 0.16 0.04 0.02 0.04 

 

5.3 TCP Friendliness 
Short-lived TCP flows such as web traffic and certain control 
messages comprise a substantial part of Internet data traffic. To 
examine the TCP friendliness property against such TCP flows, 
we set up 500 TCP connections where each transfers 1MB of data 
from Chicago to Amsterdam; a varying number of bulk UDT 
flows were started as background traffic when the TCP flows are 
started. TCP's throughput should decrease slowly as the number 
of UDT flows increases. The results are shown in Figure 15. They 
decrease from 69 Mb/s (without concurrent UDT flows) to 48 
Mb/s (with 10 UDT concurrent flows). 
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Figure 15: Aggregate throughput of 500 small TCP flows with 
different numbers of background UDT flows. This figure shows 
the aggregate throughput of 500 small TCP transactions (each 
transferring 1MB data), under different numbers of background 
UDT flows varying from 0 to 10. 
In the next experiment, we demonstrate UDT's impact to bulk 
data TCP flow in local networks where TCP works well. Figure 
16 shows the result of 2 TCP flows and 2 UDT flows coexisting 
in the StarLight local network, with 1 Gb/s link capacity and 40 
µs RTT. TCP flows utilize slightly higher bandwidth than UDT 
flows. We also start a 4-TCP experiment in the same network, and 
obtain a TCP friendliness index of 1.12. 
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Figure 16: TCP friendliness in LAN. The figure shows the 
throughput changes over time of 2 TCP flows and 2 UDT flows 
coexisting in StarLight local networks, with 1Gbps link capacity 
and 40us RTT. 
 
Figure 17 shows the CPU utilization of a single UDT flow and a 
single TCP flow (both sending and receiving) for memory-
memory data transfer. The CPU utilization of UDT is slightly 
higher than that of TCP. UDT averaged 43% (sending) and 52% 
(receiving). TCP averaged 33% (sending) and 35% receiving. 
Considering that UDT is implemented at the user level, this 
performance is acceptable. 
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Figure 17: CPU utilization at sender and receiver sides. This 
figure shows the CPU utilization percentage on the data source 
machine and the data sink machine, when a single TCP and a 
single UDT data transfer process is running. The test is between a 
pair of Linux machines, each having dual 2.4GHz Intel Xeon 
CPUs. The overall computation ability is 400% (due to hyper-
threading). Data is transferred at 970 Mb/s between memories. 

6. RELATED WORK 
6.1 TCP Modifications 
Researchers have continually worked to improve TCP. A 
straightforward approach is to use a larger increase parameter and 
smaller decrease factor in the AIMD algorithm than those used in 
the standard TCP algorithm. Scalable TCP [40] and High Speed 
TCP [23] are the two typical examples of this class. 
Scalable TCP increases its sending rate proportional to the current 
value, whereas it only decreases the sending rate by 1/8 when 
there is packet loss. HighSpeed TCP uses logarithmic increase 
and decreases functions based on the current sending rates. Both 
of the two TCP variants have better bandwidth utilization, but 
suffer from serious fairness problems. The MIMD (multiplicative 

increase multiplicative decrease) algorithm used in Scalable TCP 
may not converge to fairness equilibrium, whereas HighSpeed 
TCP converges very slowly. 
BiC TCP [67] uses a similar strategy but proposes a more 
complicated method to increase the sending rate. Achieving good 
bandwidth utilization, BiC TCP also has a better fairness 
characteristic than Scalable and HighSpeed TCP. Unfortunately, 
none of the above three TCP variants address the RTT bias 
problem; instead, the problem becomes more serious in these 
three TCP versions, especially for Scalable TCP and HighSpeed 
TCP. 
TCP Westwood [25] tries to estimate the network situation 
(available bandwidth) and then tunes the increase parameter 
accordingly. The estimation is made through the timestamps of 
acknowledgments. This strategy demonstrates a similar idea used 
by UDT. However, the Westwood method may be seriously 
damaged by the impact of ACK compression [68], which can 
occur at the existence of reverse traffic or NIC interrupt 
coalescence. 
Other recently proposed loss-based TCP control algorithms also 
include Layered TCP (L-TCP) [8] and Hamilton TCP (H-TCP) 
[55]. L-TCP uses a similar strategy as HighSpeed TCP by 
simulating the performance of multiple TCP connections to 
realize higher bandwidth utilization. H-TCP tunes the increase 
parameter and the decrease factor according to the elapsed time 
since the last rate decrease. 
Delay-based approaches have also been investigated. The most 
well known TCP variant of this kind is probably the TCP Vegas 
algorithm. TCP Vegas compares the current packet delay with the 
minimum packet delay that has been observed. If the current 
packet delay is greater, then it means that in some place the queue 
is filling up, which indicates network congestion. Recently, a new 
method that follows the Vegas' strategy called FAST TCP was 
proposed. FAST uses an equation-based approach in order to react 
to the network situation faster. Although there has been much 
theoretical work on Vegas and FAST, many of their performance 
characteristics on real networks are yet to be investigated. In 
particular, the delay information needed by these algorithms can 
be heavily affected by reverse traffic. As a consequence, the 
performance of the two protocols is very vulnerable to the 
existence of reverse traffic. 

6.2 XCP 
XCP [39], which adds explicit feedback from routers, is a more 
radical change to the current Internet transport protocol. While 
those TCP variants mentioned in subsection 6.1 tried many 
methods to estimate the network situation, XCP takes advantage 
of explicit information from the routers. As an XCP data packet 
passes each router, the router calculates an increase parameter or a 
decrease factor and updates the related information in the data 
packet header. After the data packet reaches its destination, the 
receiver sends the information back through acknowledgments. 
An XCP router uses an MIMD efficiency controller to tune the 
aggregate data rate according to the current available bandwidth 
at the bottleneck node. Meanwhile, it still uses an AIMD fairness 
controller to distribute the bandwidth fairly among all concurrent 
flows. 
XCP demonstrates very good performance characteristics. 
However, it suffers more serious deployment problems than the 
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TCP variants because it requires changes in the routers, in 
addition to the operating systems of end hosts. In addition, recent 
work showed that gradual deployment (to update the Internet 
routers gradually) has a significant performance drop [9].  

6.3 Application Level Solutions 
While TCP variants and new protocols such as XCP suffer from 
deployment difficulties, application level solutions tend to 
emerge. 
A common approach is to use parallel TCP, such as PSockets [56] 
and GridFTP [1]. Using multiple TCP flows may utilize the 
network more efficiently, but this is not guaranteed. Performance 
of parallel TCP relies on many factors from end hosts to 
networks. For example, the number of parallel flows and the 
buffer sizes of each flow have significant impact on the 
performance. The optimal values vary on specific networks and 
end hosts and are hard to tune. In addition, parallel TCP inherits 
the RTT fairness problem of TCP. 
Using rate-based UDP has also been proposed as a scheme for 
high performance data transfer to overcome TCP’s inefficiency. 
There is some work including SABUL [26], FOBS [18], RBUDP 
[33], FRTP [71], and Hurricane [65]. All of these protocols are 
designed for private or QoS-enabled networks. They have no 
congestion control algorithm or have algorithms only for the 
purpose of high utilization of bandwidth. 

6.4 SABUL 
SABUL (Simple Available Bandwidth Utilization Library) was 
our prototype for UDT. The experiences obtained from SABUL 
encouraged us to develop a new protocol with better protocol 
design and a congestion control algorithm. 
SABUL is an application level protocol that uses UDP to transfer 
data and TCP to transfer control information. SABUL has a rate-
based congestion control algorithm as well as a reliability control 
mechanism to provide efficient and reliable data transport service. 
The first prototype of SABUL is a bulk data transfer protocol that 
sends data block by block over UDP, and sends an 
acknowledgment after each block is completely received. SABUL 
uses an MIMD congestion control algorithm, which tunes the 
packet-sending period according to the current sending rate. The 
rate control interval is constant in order to alleviate the RTT bias 
problem. 
Later we removed the concept of block to allow applications to 
send data of any size. Accordingly, the acknowledgment is not 
triggered on the receipt of a data block, but is based on a constant 
time interval. Our further investigation of the SABUL 
implementation encouraged us to re-implement it from scratch 
with a new protocol design. 
Another reason for the redesign is the use of TCP in SABUL. 
TCP was used for the simplicity of design and implementation. 
However, TCP’s own reliability and congestion control 
mechanism can cause unnecessary delay of control information in 
other protocols that have their own reliability and congestion 
control as well. The in-order delivery of control packets is 
unnecessary in SABUL, but the TCP reordering can delay control 
information. During congestion, this delay can be even longer due 
to TCP’s congestion control. 

6.5 High Speed Protocol Implementation 
Several transport protocols for high-speed data transfer have been 
proposed in the past, including NETBLT [15], VMTP [12], and 
XTP [59]. They all use rate-based congestion control. NETBLT is 
a block-based bulk transfer protocol designed for long delay links. 
It does not consider the fairness issue. VMTP is used for message 
transactions. XTP involves a gateway algorithm; hence it is not an 
end-to-end approach. 

For high performance data transfer, experiences in this area have 
shown that implementation is critical to performance. Researchers 
have put out some basic implementation guidelines addressing 
performance. Probably the most famous two are ALF 
(Application Level Framing [16]) and ILP (Integrated Layer 
Processing [11]). The basic idea behind these two guidelines is to 
break down the explicit layered architecture to reach more 
efficient information processing. 

Problems arising in Gb/s data transfer were identified a decade 
ago [36]. Previously, Leue and Oechslin described a parallel 
processing scheme for a high-speed networking protocol [45]. 
However, increases of CPU speed have surpassed increases in 
network speed, and modern CPUs can fully process the data from 
networks. Therefore, using multi-processors is not necessary any 
more.  

Memory copy still costs the most in terms of CPU time for high-
speed data transfer. Rodrigues, et al. [54] and Chu [14] have 
identified this problem and addressed solutions to avoid data 
replication between kernel space and user space. 

There is also literature that describes the overall implementation 
issues of specified transport protocols. For example, Edwards, et 
al. describe an implementation of a user level TCP in [20], and 
Banerjea, et al. present the Tenet protocol design and 
implementation in [6]. 

6.6 Protocol Framework 
There are few user level protocol stacks that provide a 
programming interface for user-defined congestion control 
algorithms as Composable UDT does. 
The Globus XIO library has somewhat similar objectives, but the 
approach is quite different. XIO implements a set of primitive 
protocol components and APIs for fast creation or prototyping 
new protocols, which helps the lower level simplification such as 
timing and message passing. In contrast, Composable UDT allows 
users to focus only on the congestion control algorithm, and thus 
usually results in a much smaller program. 
Other user level libraries include several user level TCP 
implementations [21, 46, 60]. One particular implementation is 
the Alpine [21] library. Alpine is an attempt to move the entire 
kernel protocol stack into the user space, and provides (almost) 
transparent application interfaces at the same time. None of these 
libraries provide programmable interfaces. 
In kernel space, the most similar work to Composable UDT is 
probably the icTCP [31] library. It exposes key TCP parameters 
and provides controls to these parameters to allow new TCP 
algorithms deployed in user space. Despite the different nature of 
kernel and user space implementations, icTCP limits the update 
on TCP controls only, whereas Composable UDT supports a 
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broader set of protocols. Other work that uses a similar approach 
to icTCP includes Web100/Net100 [47] and CM [4]. 
Another protocol, STP [49], has more radical changes but also has 
more powerful expression ability. The STP’s approach is to 
provide a set of protocol implementation APIs in a sandbox. 
Meanwhile, STP itself is a protocol that supports run time code 
upgrading; thus, new protocols or algorithms can be deployed 
implicitly. To address the security problem arising from untrusted 
code, STP involves a complex security mechanism. 
Yet another more complex library is the x-kernel [34]. x-kernel is 
an OS kernel designed to support data transport protocol 
implementations. The support mechanism of x-kernel is a 
modular based system and it is more decomposed than STP. 
Besides the support of protocol implementation, x-kernel has 
many optimizations inside the OS kernel for data 
communications.  
Other modularized approaches include CTP [62] and its high 
performance successor [64]. 
While some of these in-kernel libraries may have performance 
and transparency advantages, their goal of fast deployment of new 
protocols/algorithms is compromised by the difficulty of getting 
themselves deployed. For example, x-kernel has been proposed 
for more than a decade and it still remains a research tool. In 
contrast, Composable UDT library provides a very practical 
solution for the time being. 
In addition, kernel space approaches need to protect their host 
systems and the network from security problems and they have to 
limit users’ privileges to control the protocol behavior. For 
example, both STP and icTCP prevent new algorithms from 
utilizing more bandwidth than standard TCP. Such limitations are 
not feasible for the new control algorithms for high-speed 
networks such as Scalable, HighSpeed, BiC, and FAST. The 
security problem is much less serious for Composable UDT 
because it is at user space and it is only installed as needed (in 
contrast, those libraries such as icTCP and STP will be accessible 
to every user if they are accepted by OS vendors). 

7. CONCLUSIONS 
Scalability has been one of the major research problems of the 
Internet community ever since the emergence of the World Wide 
Web (WWW). The insufficient number of IP addresses may be 
the most commonly known scalability problem. However, in 
many high-speed networks researchers have also found that as a 
network’s bandwidth-delay product increases TCP, the major 
Internet data transport protocol, does not scale well either.  

As an effective, timely, and practical solution to this BDP 
scalability problem, we designed and implemented the UDT 
protocol that can utilize the abundant optical bandwidth 
efficiently and fairly in distributed data intensive applications.  

UDT’s approach is highly scalable. Given that there is enough 
CPU power, UDT can support up to unlimited bandwidth within 
terrestrial areas. The timer-based selective acknowledgment 
generates a constant number of ACKs no matter how fast the data 
transfer rate is. The congestion control algorithm and the 
bandwidth estimation technique allow UDT to increase to 90% of 
the available bandwidth no matter how large it is. Finally, the 
constant rate control interval removes the impact of RTT. 

We have done extensive simulations and experimental studies to 
verify UDT’s performance characteristics. UDT can utilize high 
bandwidth very efficiently and fairly. The intra-protocol fairness 
is maintained even between flows with different RTTs. This is 
very important for many distributed applications. 

To benefit a broader set of network developers and researchers, 
we have expanded our UDT protocol and associated 
implementation to accommodate various congestion control 
algorithms. 

In the short term, UDT is a practical solution to the data transfer 
problem in the emerging distributed data intensive applications. In 
the long term, because of the long time lag in deployment of in-
kernel protocols but the fast speed with which new applications 
are emerging, UDT will still be a very useful tool in both 
application development and network research. 

The open source UDT library can be downloaded from 
http://udt.sf.net. 
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