
1

Data Mining Middleware for
Wide Area High Performance Networks

Robert L. Grossman*, Yunhong Gu, David Hanley, and Michal Sabala

National Center for Data Mining, University of Illinois at Chicago, USA

Joe Mambretti
International Center for Advanced Internet Research, Northwestern University, USA

Alex Szalay and Ani Thakar
Johns Hopkins University, USA

Kazumi Kumazoe and Oie Yuji
Kitakyushu JGNII Research Center, Japan

Minsun Lee, Yoonjoo Kwon, and Woojin Seok

Korea Institute of Science and Technology Information, Korea

ABSTRACT
In this paper, we describe two distributed, data intensive applications that were demonstrated at iGrid 2005 (iGrid Demonstration US109
and iGrid Demonstration US121). One involves transporting astronomical data from the Sloan Digital Sky Survey (SDSS) and the other
involves computing histograms from multiple high volume data streams. Both rely on newly developed data transport and data mining
middleware. Specifically, we describe a new version of the UDT network protocol called Composible-UDT, a file transfer utility based
upon UDT called UDT-Gateway, and an application for building histograms on high volume data flows called BESH for Best Effort
Streaming Histogram. For both demonstrations, we include a summary of the experimental studies performed at iGrid 2005.

Keywords
High performance network protocols, high performance networks, high performance data mining, data mining middleware

1. INTRODUCTION
High-speed (1Gb/s and 10Gb/s) wide area networks provide us
the opportunity to deploy data intensive applications over large
geographic areas. Until recently, distributed data intensive
applications were usually designed to minimize inter-process data
communications; if large data transfers could not be avoided,
large data sets were sometimes loaded onto disks or tapes and
physically sent to remote sites. As a consequence, there were
usually substantial delays when analyzing large distributed data
sets, especially when two or more such data sets had to be

integrated.

For example, telescopes in the Sloan Digital Sky Survey (SDSS)
[19] collect gigabytes of data per day. This data is currently stored
locally, and a data release is made periodically, e.g., every quarter
of a year. The data is then sent to astronomers around the world
via disks or tapes. Analysis results that produce large data sets are
difficult to exchange among the astronomers. Also, overlaying a
second data set on top of the SDSS data in order to discover
astronomical objects that are too faint to be identified from one
data set alone requires a substantial effort.

With high-speed wide area optical links connecting the
observation stations, processing centers, and astronomers, these
data sets and the analysis results can now be shared in near real
time. Thus the processing delay can be significantly reduced and
different data sets can be more easily combined.

However, existing applications cannot automatically make use of
the emerging high-speed networks. First, the de facto Internet
transport protocol, TCP as usually deployed, significantly

* Contact Author: grossman@uic.edu

Robert L. Grossman is also with Open Data Partners.

2

underutilizes the network bandwidth in high-speed long distance
environments. Several alternatives and enhancements to TCP have
been developed over the past several years [8], including UDT
[12]. Second, the current generation of data mining software and
middleware was not designed to process data at high speeds
across distributed computing sites and data sources.
At iGrid 2005, we demonstrated three middleware applications
designed to address these issues. One is a new version of the UDT
protocol we have previously described [12] that is composible in
the sense that it is designed to easily support different congestion
control algorithms [10]. The application is called Composible-
UDT. The remaining two middleware applications are built over
Composible-UDT. The first of these is a file transfer utility called
UDT-Gateway that provides access to UDT-based data services
using TCP-based applications for the “last mile.” This greatly
expands the population of end users that can use UDT-based data
services. The second of these is a best effort online histogram
application called BESH for Best Effort Streaming Histogram.

At iGrid 2005, we demonstrated Composible-UDT, UDT-
Gateway and BESH in two demonstrations. The first was iGrid
Demonstration US121, which transported data from the SDSS.
The second was iGrid Demonstration US109, which computed
streaming histograms using data from web logs for web servers
that provided results of the 1998 World Cup.

In Section 2 we describe the experimental set up. In Section 3, we
describe the data transport middleware: UDT and UDT-Gateway.
In Section 4, we describe the data mining middleware for
computing histograms on high volume streaming data. The
experimental results are described in Section 5. Section 6 briefly
reviews related work. Section 7 contains a summary and
conclusion.

2. EXPERIMENTAL SETUP
In this section we describe the hardware and network
infrastructure used in our iGrid 2005 demonstrations. We also
describe the data sets we used.

2.1 Hardware Infrastructure
We had 4 dual Opteron machines with 10GE NICs at the iGrid
2005 Conference, which were each connected to a 10GE port on
one of the iGrid 2005 switches.

Located outside the conference, as part of a testbed we operate
called the Teraflow Testbed [22], we had four dual Opteron
machines with 10GE NICs. Two of the machines were in
Chicago, one in Tokyo, Japan, and one in Daejeon, Korea. Each
was connected to one of the four machines at the conference via
routed 10 Gb/s link (Figure 1).
All the machines have dual AMD Opterons running at 2.4 Ghz, 4
GB of physical memory, and 1.5 TB RAID 5 or RAID 0 disk
space, except for the Korean machine, which uses dual XEON
processors. Debian Linux 2.6 SMP is installed on each of these
systems.

Figure 1. iGrid 2005 NCDM Booth Network Diagram. This
figure illustrates the 10Gb/s network infrastructure between
several nodes on the Teraflow Testbed and the Linux cluster at
iGrid 2005. All links have 10Gb/s capacity.

2.2 Network Infrastructure
The two machines in Chicago (Figure 1) were located at StarLight
and were each connected to their counterparts at iGrid via 10 Gb/s
optical paths. The third machine at iGrid was connected to its
counterpart in Daejeon, Korea via the PWave and KERONet2
(GLORIAD) networks. The fourth machine at iGrid was
connected to its counterpart in one of the JGN II research centers
located in Tokyo, Japan via the Abilene, StarLight, and JGN II
networks. Each of the connections was 10 Gb/s. The RTT
between the Chicago and iGrid was 66 ms; the RTT between
Tokyo, Japan and iGrid was 180 ms; and the RTT between
Daejeon, Korea and iGrid was 139 ms.

2.3 SDSS Data Set
In US121 demonstration, we preloaded 797 GB of compressed
Sloan Digital Sky Survey (SDSS) [19] data to our four machines
at iGrid. This was the BESTDR3 release of the data. The data was
divided into 64 files, each of which was about 12.463 GB. During
our demonstration, we moved this data to the machine in Korea.
When uncompressed, the data was 1.5 TB.
After iGrid, we moved SDSS data from our machines at StarLight
to our machines in Japan and applied the streaming histogram
algorithm (used in US109) to the SDSS data to analyze the
distribution of the brightness of the stars. The results are reported
in Section 5.

2.4 World Cup 98 Data Set
The US109 demonstration used web log data from four web
servers located in Paris, California, Texas and Virginia that
provided information about the 1998 (soccer) World Cup. For the
demonstration, we replicated this data onto four of our machines
located in Chicago (2), Japan, and Korea.

The original data set contained 8 attributes, including the number
of bytes of the data transfer. This attribute ranged in value from 0
to 231. Additional derived attributes were added for this
demonstration bringing the number of attributes to 13. Using the
iGrid machines, a separate histogram was built on each of the four
streams, and then the four histograms were merged to produce a
single summary histogram for all four streams.

3

3. DATA TRANSPORT MIDDLEWARE
It is well known that TCP substantially underutilizes the network
bandwidth in high bandwidth-delay product environments. We
have analyzed this problem and developed practical solutions
since 2001 [9, 10, 11, 12, 13, 14].

As mentioned above, at iGrid 2005, we demonstrated the current
version of UDT, (called Composible-UDT) and a file transfer
utility based upon Composible-UDT called UDT-Gateway. In this
section we will give a brief review of Composible-UDT and
UDT-Gateway.

3.1 UDT
UDT is an application level data transport protocol designed for
the emerging applications that will require transfer of large
amounts of data distributed over high-speed wide area networks
(e.g., 1 Gb/s or above). UDT uses UDP to transfer data but unlike
simple UDP it has its own reliability control and congestion
control mechanisms. UDT is not only for private or QoS-enabled
links, but also for shared networks. Furthermore, the current
version of UDT that was used at iGrid is designed using a
Composible framework that supports multiple congestion control
algorithms. For more information about UDT, see [12].

Figure 2. UDT Memory-Memory Data Transfer Performance.
This performance was obtained between two dual AMD Opteron
machines between Chicago and Tokyo, via a 10Gb/s link with 180
ms RTT.

Figure 2 shows the memory-memory data transfer performance
using UDT between a pair of machines at Chicago and Tokyo,
respectively. Because CPU usage limits the throughput of a single
flow of UDT to about 5 Gb/s, we started two parallel UDT flows
between the machines to take advantage of the dual processors on
each machine. Using two UDT flows, we can reach a peak
throughput of more than 7 Gb/s, which is near the hardware limit.

In the experiment shown in Figure 2, UDT reached an average
throughput of 6.21 Gb/s, with the maximum throughput of 7.10
Gb/s. The standard deviation of the throughput per one-second
unit time is 0.81 Gb/s.

3.2 Composible-UDT

Composible-UDT is not only a transport protocol library, but also
a framework that supports many protocol configurations, in
particular different congestion control algorithms.

Previously, we have provided an overview of Composible-UDT’s
congestion control framework, which is called CCC [10].
UDT/CCC allows user defined congestion control algorithms to
be easily implemented. The UDT/CCC library enables easy
implementations of a large variety of congestion control
algorithms. The overhead of the framework, compared to a direct
implementation, is minimal. When using the default algorithm,
Composible-UDT has essentially the same performance as our
direct UDT implementation.

Composible-UDT is still an ongoing project. Future releases will
also include more configuration abilities, such as limited data
reliability.

3.3 UDT Gateway
For many end users, it is easier to use a file transfer utility
employing TCP, or a web application employing HTTP and TCP,
rather than to use UDT directly. To support this requirement, we
developed the UDT-Gateway utility. To the user, it appears they
are accessing data using a TCP-based application on the gateway
machine, but, in fact, the data resides on a data server that is
connected to the gateway machine using a high performance
network and UDT. The data server can serve multiple gateway
machines.

Specifically, the UDT gateway behaves exactly as an HTTP file
server, and serves clients files via the ordinary HTTP/TCP
channels. However, the gateway server does not host the files it
serves locally. When a request arrives for a file, the file is
streamed from a central repository via UDT, then streamed to the
end consumer via TCP. In other words, the gateway machine
allows the user to access large data sets using UDT and high
performance networks for all except the “last mile,” which is
handled using more standard networks and TCP.

HTTP/TCP access for the last mile solves many practical issues
related to firewalls that are still a problem for many end users.
The idea is that gateways can be placed on high-speed backbones,
and end-users will simply use gateways close to their actual
location. This system also provides the benefit of enabling what
we call "lightweight routes." The UDT gateways sit on the high-
speed backbone, as does the central data repository. The user
fetches the data from the closest gateway, and indirectly retrieves
the data from the central repository. This not only makes the best
use of high-speed backbones, but also hides the procedure to
locate the actual data repository, which increases the security and
flexibility of the system.

4. Data Mining Middleware
In this section, we describe the data mining middleware we
demonstrated at iGrid 2005.

Simply developing high-speed data transport middleware will not
enable wide-area data intensive applications. We also need data
mining middleware that scales to high volume data flows. At
iGrid, we demonstrated data mining middleware supporting a
streaming model for processing data. This model places two
requirements on the algorithm: first, the data is examined only
once; second, only a fixed amount of storage (independent of the
size of the data stream) is available.

4

There is quite a bit of prior work on streaming algorithms.
However, we are not aware of any prior work addressing how to
scale streaming algorithms to 1 Gbps or 10 Gbps streams.

A key component of several data mining algorithms is computing
histograms. We recently developed a binary partition dynamic
histogram algorithm that is designed to scale to high volume data
flows. As mentioned above the algorithm is called BESH for Best
Effort Streaming Histogram.
At iGrid, we used BESH to solve the following problem. Suppose
there is an infinite data stream consisting of integers between 0
and 231. We want to keep a histogram H to record the total number
of each value that has appeared so far.
Because the value space of the attributes of the data stream is too
large to maintain an accurate histogram on it (due to the
limitation of memory space), we employ an approximate
histogram algorithm in which each bucket covers a scope of
multiple values, rather than a single value. For example, a bucket
[x, y] tracks the number of records whose specific attribute has a
value between x and y.

Because we must process the data stream in a single pass, we do
not know in advance either the number of buckets or the size of
each bucket. For this reason, we dynamically split and merge the
buckets as we process the stream.

There are three major approximate histograms: equiv-width,
equiv-depth, and V-Optimal [4, 5]. The histogram that results
from our algorithm is similar to the equiv-depth histogram, but
not the same.

The binary partitioning algorithm is illustrated in Figure 3. At the
very beginning, there is only one node in the system: [0, 1024]
(supposing the values are between 0 and 1024). Once a new value
arrives, the root node is split evenly into two nodes. As values
continues to arrive, if a node contains more values than a
threshold, it will further be split. Similarly, if a node contains a
very small number of values, all of its sub-nodes will be merged.

The leaf nodes consist of the histogram. For example, in Figure 3,
the histogram on the stream with values varying between 0 and
1024 is: (0 – 256: 1000), (257 – 768: 2500), and (769 – 1024:
1500).

In order to describe the detailed algorithm, we define the
following four parameters:

N: Total of values scanned so far.
V[Bi]: The number of values in bucket Bi.
Max-thresh: The upper percentage limit of the size of
buckets. Buckets exceeding this limit must be split.
Min-thresh: The lower percentage limit of the size of
buckets. Back-to-back buckets smaller than this size must be
merged.

BESH Initialization: There is one bucket in the histogram,
covering values from 0 to 231.
Computing a histogram using BESH. For each new record:

1. Locate the bucket B that the new value belongs to,
update V[B], all its parent nodes, and N;

2. If (V[B] / N > max-thresh), equally split the node into
two leaf nodes;

3. If new nodes are generated in Step 2, check every node
in the tree. For any node B such that (V[B] / N < min-
thresh), remove all its children nodes.

The leaf nodes are not the final result. Once a partial histogram of
the stream is needed, a merge process on the leaf nodes is
executed:

BESH Merge: For every leaf node B from the left to the right, if
(V[B] / N > min-thresh), then it is one of the buckets in the final
result. On the other hand, if the last bucket on the current final
histogram Bp satisfies (V[Bp] / N < min-thresh), then B will be
merged with Bp, and no new buckets will be inserted into the final
histogram; otherwise B will be inserted into the final histogram.

5000

0 1024

1000

0 256

4000

257 1024

2500

257 768

1500

769 1024

Figure 3. The BESH Dynamic Binary Partition Histogram.
Each node contains the lower and upper limit of values in one
bucket, and the number of values in the bucket. The leaf nodes
consist of the histogram.

Merging histograms from different streams. Finally, because
there is one histogram on each stream, the final histogram H is
produced by merging all the sub-histograms Hi:

1. For every bucket in every sub-histogram Hi, put the
boundaries of the bucket into a boundary list.

2. For every interval along the boundary list constructed in
Step 1, a new bucket B is allocated. For each bucket B'
in every histogram Hi, if B' overlaps with B, then update
B with the portion of the contribution from B', assuming
that the values in B' are evenly distributed.

3. Apply the BESH Merge described above to the
histograms constructed in Step 2.

The dominant cost of computing a BESH histogram is the cost of
the updates. Because there is an upper limit and a lower limit for
the size of each bucket, the total number of leaf buckets is less
than M, where M = 1/min-thresh. For each new record, in the
worst case, all the existing buckets may have to be scanned to
check if there are any buckets to be merged. For this reason the
cost of computing a BESH histogram is O(MN).

5

5. EXPERIMENTAL RESULTS
For each of our demonstrations, we had two official time slots.
We also tested our applications during the nighttime, especially
the BESH algorithm.

US109 Experimental Results. The performance of US109 is
recorded in Figures 4, 6 and 7, which are the figures taken from
the real time display during one of our demos. Figure 4 shows the
real time dynamic histogram on the four data streams. Figure 6
shows the aggregate throughput of the streaming data mining
application. The average speed is around 8 Gb/s with a peak speed
of 14 Gb/s. The per-flow throughput is shown in Figure 7. Each
flow realized an average throughput of 2 Gb/s.

Figure 4. Real Time Histogram on High Speed Data Streams
(US109). This figure is a snapshot of the histogram on the four
real time web traffic streams used in US109 demo.

Figure 5 shows the counterpart histogram obtained by a standard
histogram algorithm (i.e., without any of the limitations imposed
by the streaming model) using the same buckets as those in Figure
4. The two figures are almost identical, and, at least for this data,
there is very little loss in accuracy when using the best effort
BESH algorithm.

Figure 5. This figure contains a histogram computed from the
same data sets that were used for US109 but computed as
usual with a standard histogram algorithm. The same buckets
were used for the streaming BESH algorithm in US109.

Figure 6. Aggregate Throughput of Streaming Data Mining
(US109). This figure shows the aggregate throughput of
computing histograms over four parallel flows during one official
US109 demo slot.

Figure 7. Per Flow Throughput of Streaming Data Mining
(US109). This figure shows the per flow throughput of computing
histograms of four parallel flows during one official US109 demo
slot.

As we mentioned previously, after iGrid 2005, we applied the
BESH algorithm to the SDSS data between Chicago and Tokyo,
which were connected via 10Gb/s link. The data was transferred
from Chicago to Tokyo in one stream. The SDSS histogram and
the data transfer and processing speed are listed in Figure 8 and
Figure 9, respectively. Figure 9 shows that an average of 3 Gb/s
throughput had been reached.

Figure 8. Analysis of SDSS data using BESH. We transferred
SDSS data from Chicago to Tokyo via 10Gb/s link and used BESH
to analyze the distribution of the brightness of the stars. This
figure shows the brightness histogram.

Figure 9 . Analysis of SDSS data using BESH. We transferred
SDSS data from Chicago to Tokyo via 10Gb/s link and used BESH

6

to analyze the distribution of the brightness of the stars. This
figure show the brightness histogram.

US121 Experimental Results. During the US121 demo, we
transferred the entire BESTDR3 release of the SDSS data from
the iGrid floor to nodes in Daejeon (Korea), Tokyo (Japan), and
Chicago. The results are reported in Table 1. As mentioned above,
the data consisted of 64 compressed files, each about 12.463 GBs,
and in total comprising 797 GB of compressed data. When
uncompressed, the data was about 1.5 TB.

For example, we transferred this data from San Diego to Daejeon
in approximately 2.5 hours. The average transfer speed was 1027
Mb/s and the peak speed was over 1200 Mb/s. This was the first
time that an astronomy data set of this size was transferred from
disk to disk at this speed across the Pacific. With conventional
networks and network protocols this transfer would not have been
practical. A portion of the SDSS transfer throughput is shown in
Figure 10.

Note that in this demonstration the disk IO speed is one of the
major bottlenecks.

Table 1. This table summarizes three transfers of the Sloan
Digital Sky Survey (SDSS) Release 3 data. The data consisted
of 64 files, each about 12.463 GB in size, and compromising
about 797 GB in total. All results are reported in Mbps. The
mean, median, standard deviation, minimum and maximum are
computed from the 64 different transfers.

Transfer:
from

iGrid to

Mean Median Standard
Deviation

Min Max

Chicago 653 712 255 128 1008

Kisti 1027 1160 229 312 1280

Tokyo 398 416 96 88 448

Figure 10. Throughout of SDSS data transfer from San Diego
to KISTI, Korea. This snapshot illustrates the disk-disk data
transfer throughput (Mb/s) over time (seconds).

6. RELATED WORK

Moving large data sets over high-speed wide area networks has
been recognized as a challenging task for many years. During
iGrid 2002, various groups demonstrated prototypes of several
different tools for high performance data transport [2, 3, 9, 16, 18,
21].

Since then, various new data transport protocols or related
congestion control algorithms [8, 10, 12] have been designed and
developed. Comparison between different protocols is now
commonly regarded as a complicated topic, as each protocol has
both advantages and disadvantages and no single protocol has
proved superior [15].

Since 1999, we have continued to develop a high performance
data transport protocol based upon UDP: The first version was
called SABUL [14]. SABUL used TCP as a control channel and
was demonstrated at iGrid 2002. The next version [12] was
completely implemented in UDP in order to gain efficiency. The
current version [10] is called Composible-UDT and was used at
iGrid 2005. One of the advantages of UDT is that it is easy to
deploy since it can be deployed at the application level and does
not require changing the kernel.

Perhaps the most widely deployed tool for bulk data transport is
GridFTP [1], which uses parallel TCP to transfer data. In
contrast, UDT uses UDP to transport the data and adds reliability
and congestion control. We note that an upcoming release of
GridFTP is expected to be integrated with a UDT driver enabling
GridFTP to transfer data using UDT.

Tools for high performance data transport that have been widely
adopted have tended to provide a more convenient user interface
than that provided by a raw socket API. For this reason, UDT-
Gateway provides a HTTP interface and hides the details of the
UDT protocol.
We turn next to related work involving high volume data streams.
Although streaming data mining is an area of active research,
most of the work focuses on sensor networks and traditional
Internet environments where the data transfer speed is much lower
than what we saw during iGrid 2005.

Various approaches have been proposed for histogram
computation on streaming data [5, 6, 17, 20]. These methods
basically fall into two classes. One is to use different strategies to
dynamically split and merge the buckets. The other is to construct
a summary structure on the data stream and build histograms from
the summary structure. Our method belongs to the first class. As
far as we are aware, our implementation of the BESH algorithm
over UDT is the first time that histograms have been computed on
streaming data at the speeds seen at iGrid 2005.
More detailed analysis of histograms and streaming data
processing is beyond the scope of this paper. Some general
streaming data processing issues are discussed in [4, 7].

7. CONCLUSIONS

In this paper, we have described two demonstrations at iGrid 2005
that use data transport middleware and data mining middleware
tools that we have developed.

7

For this first demonstration, we used the UDT-Gateway file
transfer utility to transfer astronomical data from the iGrid 2005
conference to Korea. We transferred over 797 GB of data at a
mean rate of 1027 Mb/s. This was the first time that we are aware
of that astronomical data of this size has been transported across
the Pacific.

For the second demonstration, we computed histograms on four
high volume data flows that were streamed from Chicago, Korea,
and Japan to the iGrid conference. We used an algorithm we
designed and implemented called BESH. The average processing
rate was about 8 Gb/s, with a peak speed of 14 Gb/s. This is one
of the highest rates at which histograms have been computed on
data distributed around the world that we are aware of.

Both applications were built over Composibile-UDT [10], a recent
implementation of the UDT protocol that is composible in the
sense that different congestion control algorithms can be easily
implemented.

Finally, both of these demonstrations show the practicality of
building useful, distributed data intensive applications using
UDT-enabled middleware.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grant ANI 9977868, the Department of Energy
under grant DE-FG02-04ER25639, and the U.S. Army Pantheon
Project.

9. REFERENCES
[1] Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Foster,

I., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D. and
Tuecke, S. Data Management and Transfer in High
Performance Computational Grid Environments. Parallel
Computing. 2001.

[2] W. Allcock, J. Bresnahan, J. Bunn, S. Hegde, J. Insley, R.
Kettimuthu, H. Newman, S. Ravot, T. Rimovsky, C.
Steenberg, L. Winkler, "Grid-enabled particle physics event
analysis: experiences using a 10 Gb, high-latency network
for a high-energy physics application", Future Generation
Computer Systems 19(6):983-997 August 2003

[3] A. Antony, J. Blom, C. de Laat, J. Lee and W. Sjouw.
Microscopic Examination of TCP Flows over Transatlantic
Links Future Generation Computer Systems, Volume 19(6),
2003.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and Issues in Data Stream Systems, in Proc. of the
2002 ACM Symp. on Principles of Database Systems (PODS
2002), June 2002.

[5] Donko Donjerkovic, Yannis E. Ioannidis, Raghu
Ramakrishnan. Dynamic Histograms: Capturing Evolving
Data Sets, Proceedings of the 16th International Conference
on Data Engineering, San Diego, California, USA, February
2000.

[6] Filippo Furfaro, Giuseppe M. Mazzeo, Domenico Saccà,
Cristina Sirangelo: Hierarchical binary histograms for
summarizing multi-dimensional data. SAC 2005: 598-603.

[7] Mohamed Medhat Gaber, Arkady B. Zaslavsky, Shonali
Krishnaswamy: Mining data streams: a review. SIGMOD
Record 34(2): 18-26 (2005).

[8] Mathieu Goutelle (editor), Yunhong Gu, Eric He (editor),
Sanjay Hegde, Rajkumar Kettimuthu, Jason Leigh, Pascale
Vicat-Blanc/Primet, Michael Welzl (editor), and Chaoyue
Xiong. A Survey of Transport Protocols other than Standard
TCP. In Global Grid Forum Data Transport Research Group.
February 2004.

[9] Robert L. Grossman, Yunhong Gu, Dave Hanley, Xinwei
Hong, Dave Lillethun, Jorge Levera, Joe Mambretti, Marco
Mazzucco, and Jeremy Weinberger, Experimental Studies
Using Photonic Data Services at IGrid 2002, Journal of
Future Computer Systems, 2003, Volume 19, Number 6,
pages 945-955.

[10] Yunhong Gu and Robert Grossman, Supporting Configurable
Congestion Control in Data Transport Services, SC 2005,
Seattle, Nov. 2005.

[11] Yunhong Gu and Robert Grossman, Optimizing UDP-based
Protocol Implementation. PFLDNet 2005, Lyon, France,
Feb. 2005.

[12] Yunhong Gu, Xinwei Hong, and Robert Grossman,
Experiences in Design and Implementation of a High
Performance Transport Protocol, SC 2004, Nov 6 - 12,
Pittsburgh, PA, USA.

[13] Yunhong Gu, Xinwei Hong and Robert Grossman, An
Analysis of AIMD Algorithms with Decreasing Increases,
First Workshop on Networks for Grid Applications (Gridnets
2004), Oct. 29, San Jose, CA, USA.

[14] Yunhong Gu and Robert L. Grossman, SABUL: A Transport
Protocol for Grid Computing, Journal of Grid Computing,
2003, Volume 1, Issue 4, pp. 377-386.

[15] Sangtae Ha, Yusung Kim, Long Le, Injong Rhee, and Lisong
Xu, A Step toward Realistic Performance Evaluation of
High-Speed TCP Variants, PFLDNet 2006, Nara, Japan.

[16] C. de Laat, E. Radius, S. Wallace, The rationale of current
optical networking initiatives, Future Generation Computer
Systems, Vol. 19, Number 6, August 2003, pp. 999-1008.

[17] G S Manku and R Motwani, Approximate Frequency Counts
over Data Streams, VLDB 2002 (28th VLDB), p 346-357,
August 2002.

[18] J. Mambretti, J. Weinberger, J. Chen, E. Bacon, F. Yeh, D.
Lillethun, R. Grossman, Y. Gu, M. Mazzucco, The Photonic
TeraStream: Enabling Next Generation Applications
Through Intelligent Optical Networking at iGrid 2002,
Journal of Future Computer Systems, Elsevier Press, Volume
19, Number 6, pages 897-908.

[19] A. Szalay, J. Gray, A. Thakar, P. Kuntz, T. Malik, J.
Raddick, C. Stoughton. J. Vandenberg: The SDSS SkyServer
- Public Access to the Sloan Digital Sky Server Data, ACM
SIGMOD 2002.

[20] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic
multidimensional histograms. In Proc. SIGMOD, 2002.

[21] Chong Zhang, Jason Leigh, Thomas A. DeFanti, Marco
Mazzucco and Robert Grossman, TeraScope: Distributed
Visual Data Mining of Terascale Data Sets Over Photonic

8

Networks, Journal of Future Computer Systems, 2003,
Volume 19, Number 6, pages 935-943.

[22] Teraflow Testbed, http://www.teraflowtestbed.net.

[23] UDT: UDP-based Data Transfer Protocol, http://udt.sf.net.

