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ABSTRACT 
In this paper, we describe two distributed, data intensive applications that were demonstrated at iGrid 2005 (iGrid Demonstration US109 
and iGrid Demonstration US121). One involves transporting astronomical data from the Sloan Digital Sky Survey (SDSS) and the other 
involves computing histograms from multiple high volume data streams. Both rely on newly developed data transport and data mining 
middleware. Specifically, we describe a new version of the UDT network protocol called Composible-UDT, a file transfer utility based 
upon UDT called UDT-Gateway, and an application for building histograms on high volume data flows called BESH for Best Effort 
Streaming Histogram. For both demonstrations, we include a summary of the experimental studies performed at iGrid 2005. 
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1. INTRODUCTION 
High-speed (1Gb/s and 10Gb/s) wide area networks provide us 
the opportunity to deploy data intensive applications over large 
geographic areas. Until recently, distributed data intensive 
applications were usually designed to minimize inter-process data 
communications; if large data transfers could not be avoided, 
large data sets were sometimes loaded onto disks or tapes and 
physically sent to remote sites. As a consequence, there were 
usually substantial delays when analyzing large distributed data 
sets, especially when two or more such data sets had to be 

integrated. 

For example, telescopes in the Sloan Digital Sky Survey (SDSS) 
[19] collect gigabytes of data per day. This data is currently stored 
locally, and a data release is made periodically, e.g., every quarter 
of a year. The data is then sent to astronomers around the world 
via disks or tapes. Analysis results that produce large data sets are 
difficult to exchange among the astronomers. Also, overlaying a 
second data set on top of the SDSS data in order to discover 
astronomical objects that are too faint to be identified from one 
data set alone requires a substantial effort. 

With high-speed wide area optical links connecting the 
observation stations, processing centers, and astronomers, these 
data sets and the analysis results can now be shared in near real 
time. Thus the processing delay can be significantly reduced and 
different data sets can be more easily combined. 

However, existing applications cannot automatically make use of 
the emerging high-speed networks. First, the de facto Internet 
transport protocol, TCP as usually deployed, significantly 
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underutilizes the network bandwidth in high-speed long distance 
environments. Several alternatives and enhancements to TCP have 
been developed over the past several years [8], including UDT 
[12]. Second, the current generation of data mining software and 
middleware was not designed to process data at high speeds 
across distributed computing sites and data sources. 
At iGrid 2005, we demonstrated three middleware applications 
designed to address these issues. One is a new version of the UDT 
protocol we have previously described [12] that is composible in 
the sense that it is designed to easily support different congestion 
control algorithms [10]. The application is called Composible-
UDT. The remaining two middleware applications are built over 
Composible-UDT. The first of these is a file transfer utility called 
UDT-Gateway that provides access to UDT-based data services 
using TCP-based applications for the “last mile.” This greatly 
expands the population of end users that can use UDT-based data 
services. The second of these is a best effort online histogram 
application called BESH for Best Effort Streaming Histogram. 

At iGrid 2005, we demonstrated Composible-UDT, UDT-
Gateway and BESH in two demonstrations. The first was iGrid 
Demonstration US121, which transported data from the SDSS. 
The second was iGrid Demonstration US109, which computed 
streaming histograms using data from web logs for web servers 
that provided results of the 1998 World Cup. 

In Section 2 we describe the experimental set up. In Section 3, we 
describe the data transport middleware: UDT and UDT-Gateway. 
In Section 4, we describe the data mining middleware for 
computing histograms on high volume streaming data. The 
experimental results are described in Section 5. Section 6 briefly 
reviews related work. Section 7 contains a summary and 
conclusion. 
 

2. EXPERIMENTAL SETUP 
In this section we describe the hardware and network 
infrastructure used in our iGrid 2005 demonstrations. We also 
describe the data sets we used. 
 

2.1 Hardware Infrastructure 
We had 4 dual Opteron machines with 10GE NICs at the iGrid 
2005 Conference, which were each connected to a 10GE port on 
one of the iGrid 2005 switches.  

Located outside the conference, as part of a testbed we operate 
called the Teraflow Testbed [22], we had four dual Opteron 
machines with 10GE NICs. Two of the machines were in 
Chicago, one in Tokyo, Japan, and one in Daejeon, Korea. Each 
was connected to one of the four machines at the conference via 
routed 10 Gb/s link (Figure 1). 
All the machines have dual AMD Opterons running at 2.4 Ghz, 4 
GB of physical memory, and 1.5 TB RAID 5 or RAID 0 disk 
space, except for the Korean machine, which uses dual XEON 
processors. Debian Linux 2.6 SMP is installed on each of these 
systems. 
 

 
Figure 1. iGrid 2005 NCDM Booth Network Diagram. This 
figure illustrates the 10Gb/s network infrastructure between 
several nodes on the Teraflow Testbed and the Linux cluster at 
iGrid 2005. All links have 10Gb/s capacity. 
 

2.2 Network Infrastructure 
The two machines in Chicago (Figure 1) were located at StarLight 
and were each connected to their counterparts at iGrid via 10 Gb/s 
optical paths. The third machine at iGrid was connected to its 
counterpart in Daejeon, Korea via the PWave and KERONet2 
(GLORIAD) networks. The fourth machine at iGrid was 
connected to its counterpart in one of the JGN II research centers 
located in Tokyo, Japan via the Abilene, StarLight, and JGN II 
networks. Each of the connections was 10 Gb/s. The RTT 
between the Chicago and iGrid was 66 ms; the RTT between 
Tokyo, Japan and iGrid was 180 ms; and the RTT between 
Daejeon, Korea and iGrid was 139 ms. 
 

2.3 SDSS Data Set 
In US121 demonstration, we preloaded 797 GB of compressed 
Sloan Digital Sky Survey (SDSS) [19] data to our four machines 
at iGrid. This was the BESTDR3 release of the data. The data was 
divided into 64 files, each of which was about 12.463 GB. During 
our demonstration, we moved this data to the machine in Korea. 
When uncompressed, the data was 1.5 TB. 
After iGrid, we moved SDSS data from our machines at StarLight 
to our machines in Japan and applied the streaming histogram 
algorithm (used in US109) to the SDSS data to analyze the 
distribution of the brightness of the stars. The results are reported 
in Section 5. 
 

2.4 World Cup 98 Data Set 
The US109 demonstration used web log data from four web 
servers located in Paris, California, Texas and Virginia that 
provided information about the 1998 (soccer) World Cup. For the 
demonstration, we replicated this data onto four of our machines 
located in Chicago (2), Japan, and Korea. 

The original data set contained 8 attributes, including the number 
of bytes of the data transfer. This attribute ranged in value from 0 
to 231. Additional derived attributes were added for this 
demonstration bringing the number of attributes to 13. Using the 
iGrid machines, a separate histogram was built on each of the four 
streams, and then the four histograms were merged to produce a 
single summary histogram for all four streams. 
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3. DATA TRANSPORT MIDDLEWARE 
It is well known that TCP substantially underutilizes the network 
bandwidth in high bandwidth-delay product environments. We 
have analyzed this problem and developed practical solutions 
since 2001 [9, 10, 11, 12, 13, 14].  

As mentioned above, at iGrid 2005, we demonstrated the current 
version of UDT, (called Composible-UDT) and a file transfer 
utility based upon Composible-UDT called UDT-Gateway. In this 
section we will give a brief review of Composible-UDT and 
UDT-Gateway. 
 

3.1 UDT 
UDT is an application level data transport protocol designed for 
the emerging applications that will require transfer of large 
amounts of data distributed over high-speed wide area networks 
(e.g., 1 Gb/s or above). UDT uses UDP to transfer data but unlike 
simple UDP it has its own reliability control and congestion 
control mechanisms. UDT is not only for private or QoS-enabled 
links, but also for shared networks. Furthermore, the current 
version of UDT that was used at iGrid is designed using a 
Composible framework that supports multiple congestion control 
algorithms. For more information about UDT, see [12]. 
 

 
 
Figure 2. UDT Memory-Memory Data Transfer Performance. 
This performance was obtained between two dual AMD Opteron 
machines between Chicago and Tokyo, via a 10Gb/s link with 180 
ms RTT. 
 

Figure 2 shows the memory-memory data transfer performance 
using UDT between a pair of machines at Chicago and Tokyo, 
respectively. Because CPU usage limits the throughput of a single 
flow of UDT to about 5 Gb/s, we started two parallel UDT flows 
between the machines to take advantage of the dual processors on 
each machine. Using two UDT flows, we can reach a peak 
throughput of more than 7 Gb/s, which is near the hardware limit. 

In the experiment shown in Figure 2, UDT reached an average 
throughput of 6.21 Gb/s, with the maximum throughput of 7.10 
Gb/s. The standard deviation of the throughput per one-second 
unit time is 0.81 Gb/s. 
 

3.2 Composible-UDT 
 

Composible-UDT is not only a transport protocol library, but also 
a framework that supports many protocol configurations, in 
particular different congestion control algorithms. 

Previously, we have provided an overview of Composible-UDT’s 
congestion control framework, which is called CCC [10]. 
UDT/CCC allows user defined congestion control algorithms to 
be easily implemented. The UDT/CCC library enables easy 
implementations of a large variety of congestion control 
algorithms.  The overhead of the framework, compared to a direct 
implementation, is minimal.  When using the default algorithm, 
Composible-UDT has essentially the same performance as our 
direct UDT implementation.   

Composible-UDT is still an ongoing project. Future releases will 
also include more configuration abilities, such as limited data 
reliability. 
 

3.3 UDT Gateway 
For many end users, it is easier to use a file transfer utility 
employing TCP, or a web application employing HTTP and TCP, 
rather than to use UDT directly. To support this requirement, we 
developed the UDT-Gateway utility. To the user, it appears they 
are accessing data using a TCP-based application on the gateway 
machine, but, in fact, the data resides on a data server that is 
connected to the gateway machine using a high performance 
network and UDT. The data server can serve multiple gateway 
machines.  

Specifically, the UDT gateway behaves exactly as an HTTP file 
server, and serves clients files via the ordinary HTTP/TCP 
channels. However, the gateway server does not host the files it 
serves locally. When a request arrives for a file, the file is 
streamed from a central repository via UDT, then streamed to the 
end consumer via TCP. In other words, the gateway machine 
allows the user to access large data sets using UDT and high 
performance networks for all except the “last mile,” which is 
handled using more standard networks and TCP.  

HTTP/TCP access for the last mile solves many practical issues 
related to firewalls that are still a problem for many end users. 
The idea is that gateways can be placed on high-speed backbones, 
and end-users will simply use gateways close to their actual 
location. This system also provides the benefit of enabling what 
we call "lightweight routes." The UDT gateways sit on the high-
speed backbone, as does the central data repository. The user 
fetches the data from the closest gateway, and indirectly retrieves 
the data from the central repository. This not only makes the best 
use of high-speed backbones, but also hides the procedure to 
locate the actual data repository, which increases the security and 
flexibility of the system. 
 

4. Data Mining Middleware 
In this section, we describe the data mining middleware we 
demonstrated at iGrid 2005.  

Simply developing high-speed data transport middleware will not 
enable wide-area data intensive applications. We also need data 
mining middleware that scales to high volume data flows. At 
iGrid, we demonstrated data mining middleware supporting a 
streaming model for processing data. This model places two 
requirements on the algorithm: first, the data is examined only 
once; second, only a fixed amount of storage (independent of the 
size of the data stream) is available. 
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There is quite a bit of prior work on streaming algorithms. 
However, we are not aware of any prior work addressing how to 
scale streaming algorithms to 1 Gbps or 10 Gbps streams.  

A key component of several data mining algorithms is computing 
histograms. We recently developed a binary partition dynamic 
histogram algorithm that is designed to scale to high volume data 
flows. As mentioned above the algorithm is called BESH for Best 
Effort Streaming Histogram. 
At iGrid, we used BESH to solve the following problem. Suppose 
there is an infinite data stream consisting of integers between 0 
and 231. We want to keep a histogram H to record the total number 
of each value that has appeared so far. 
Because the value space of the attributes of the data stream is too 
large to maintain an accurate histogram on it  (due to the 
limitation of memory space), we employ an approximate 
histogram algorithm in which each bucket covers a scope of 
multiple values, rather than a single value. For example, a bucket 
[x, y] tracks the number of records whose specific attribute has a 
value between x and y. 

Because we must process the data stream in a single pass, we do 
not know in advance either the number of buckets or the size of 
each bucket. For this reason, we dynamically split and merge the 
buckets as we process the stream. 

There are three major approximate histograms: equiv-width, 
equiv-depth, and V-Optimal [4, 5]. The histogram that results 
from our algorithm is similar to the equiv-depth histogram, but 
not the same. 

The binary partitioning algorithm is illustrated in Figure 3. At the 
very beginning, there is only one node in the system: [0, 1024] 
(supposing the values are between 0 and 1024). Once a new value 
arrives, the root node is split evenly into two nodes. As values 
continues to arrive, if a node contains more values than a 
threshold, it will further be split. Similarly, if a node contains a 
very small number of values, all of its sub-nodes will be merged. 

The leaf nodes consist of the histogram. For example, in Figure 3, 
the histogram on the stream with values varying between 0 and 
1024 is: (0 – 256: 1000), (257 – 768: 2500), and (769 – 1024: 
1500). 

In order to describe the detailed algorithm, we define the 
following four parameters: 

N: Total of values scanned so far. 
V[Bi]: The number of values in bucket Bi. 
Max-thresh: The upper percentage limit of the size of 
buckets. Buckets exceeding this limit must be split. 
Min-thresh: The lower percentage limit of the size of 
buckets. Back-to-back buckets smaller than this size must be 
merged. 
 

BESH Initialization: There is one bucket in the histogram, 
covering values from 0 to 231. 
Computing a histogram using BESH. For each new record: 

1. Locate the bucket B that the new value belongs to, 
update V[B], all its parent nodes, and N; 

2. If (V[B] / N > max-thresh), equally split the node into 
two leaf nodes; 

3. If new nodes are generated in Step 2, check every node 
in the tree. For any node B such that (V[B] / N < min-
thresh), remove all its children nodes. 

 

The leaf nodes are not the final result. Once a partial histogram of 
the stream is needed, a merge process on the leaf nodes is 
executed: 

BESH Merge: For every leaf node B from the left to the right, if 
(V[B] / N > min-thresh), then it is one of the buckets in the final 
result. On the other hand, if the last bucket on the current final 
histogram Bp satisfies (V[Bp] / N < min-thresh), then B will be 
merged with Bp, and no new buckets will be inserted into the final 
histogram; otherwise B will be inserted into the final histogram. 
 

5000

0 1024

1000

0 256

4000

257 1024

2500

257 768

1500

769 1024

 
 

Figure 3. The BESH Dynamic Binary Partition Histogram. 
Each node contains the lower and upper limit of values in one 
bucket, and the number of values in the bucket. The leaf nodes 
consist of the histogram. 
 

Merging histograms from different streams. Finally, because 
there is one histogram on each stream, the final histogram H is 
produced by merging all the sub-histograms Hi: 

1. For every bucket in every sub-histogram Hi, put the 
boundaries of the bucket into a boundary list. 

2. For every interval along the boundary list constructed in 
Step 1, a new bucket B is allocated.   For each bucket B' 
in every histogram Hi, if B' overlaps with B, then update 
B with the portion of the contribution from B', assuming 
that the values in B' are evenly distributed. 

3. Apply the BESH Merge described above to the 
histograms constructed in Step 2. 

 

The dominant cost of computing a BESH histogram is the cost of 
the updates.  Because there is an upper limit and a lower limit for 
the size of each bucket, the total number of leaf buckets is less 
than M, where M = 1/min-thresh. For each new record, in the 
worst case, all the existing buckets may have to be scanned to 
check if there are any buckets to be merged.  For this reason the 
cost of computing a BESH histogram is O(MN). 
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5. EXPERIMENTAL RESULTS 
For each of our demonstrations, we had two official time slots. 
We also tested our applications during the nighttime, especially 
the BESH algorithm. 

US109 Experimental Results. The performance of US109 is 
recorded in Figures 4, 6 and 7, which are the figures taken from 
the real time display during one of our demos. Figure 4 shows the 
real time dynamic histogram on the four data streams. Figure 6 
shows the aggregate throughput of the streaming data mining 
application. The average speed is around 8 Gb/s with a peak speed 
of 14 Gb/s. The per-flow throughput is shown in Figure 7. Each 
flow realized an average throughput of 2 Gb/s. 
 

 
 

Figure 4. Real Time Histogram on High Speed Data Streams 
(US109). This figure is a snapshot of the histogram on the four 
real time web traffic streams used in US109 demo. 
 
Figure 5 shows the counterpart histogram obtained by a standard 
histogram algorithm (i.e., without any of the limitations imposed 
by the streaming model) using the same buckets as those in Figure 
4. The two figures are almost identical, and, at least for this data, 
there is very little loss in accuracy when using the best effort 
BESH algorithm. 
 

 
 
Figure 5. This figure contains a histogram computed from the 
same data sets  that were used for US109 but computed as 
usual with a standard histogram algorithm. The same buckets 
were used for the streaming BESH algorithm in US109. 
 

 

 

Figure 6. Aggregate Throughput of Streaming Data Mining 
(US109). This figure shows the aggregate throughput of 
computing histograms over four parallel flows during one official 
US109 demo slot. 
 

 
Figure 7. Per Flow Throughput of Streaming Data Mining 
(US109). This figure shows the per flow throughput of computing 
histograms of four parallel flows during one official US109 demo 
slot. 
 

As we mentioned previously, after iGrid 2005, we applied the 
BESH algorithm to the SDSS data between Chicago and Tokyo, 
which were connected via 10Gb/s link. The data was transferred 
from Chicago to Tokyo in one stream. The SDSS histogram and 
the data transfer and processing speed are listed in Figure 8 and 
Figure 9, respectively. Figure 9 shows that an average of 3 Gb/s 
throughput had been reached. 
 

 
Figure 8. Analysis of SDSS data using BESH. We transferred 
SDSS data from Chicago to Tokyo via 10Gb/s link and used BESH 
to analyze the distribution of the brightness of the stars. This 
figure shows the brightness histogram. 
 

 
Figure 9 . Analysis of SDSS data using BESH. We transferred 
SDSS data from Chicago to Tokyo via 10Gb/s link and used BESH 
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to analyze the distribution of the brightness of the stars. This 
figure show the brightness histogram. 
 

US121 Experimental Results. During the US121 demo, we 
transferred the entire BESTDR3 release of the SDSS data from 
the iGrid floor to nodes in Daejeon (Korea), Tokyo (Japan), and 
Chicago. The results are reported in Table 1. As mentioned above, 
the data consisted of 64 compressed files, each about 12.463 GBs, 
and in total comprising 797 GB of compressed data. When 
uncompressed, the data was about 1.5 TB. 

For example, we transferred this data from San Diego to Daejeon 
in approximately 2.5 hours. The average transfer speed was 1027 
Mb/s and the peak speed was over 1200 Mb/s. This was the first 
time that an astronomy data set of this size was transferred from 
disk to disk at this speed across the Pacific. With conventional 
networks and network protocols this transfer would not have been 
practical. A portion of the SDSS transfer throughput is shown in 
Figure 10. 

Note that in this demonstration the disk IO speed is one of the 
major bottlenecks. 
 

Table 1. This table summarizes three transfers of the Sloan 
Digital Sky Survey (SDSS) Release 3 data. The data consisted 
of 64 files, each about 12.463 GB in size, and compromising 
about 797 GB in total. All results are reported in Mbps. The 
mean, median, standard deviation, minimum and maximum are 
computed from the 64 different transfers. 
 

Transfer: 
from 

iGrid to 

Mean Median Standard 
Deviation 

Min Max 

Chicago 653 712 255 128 1008 

Kisti 1027 1160 229 312 1280 

Tokyo 398 416 96 88 448 

 
 

 
 
Figure 10. Throughout of SDSS data transfer from San Diego 
to KISTI, Korea. This snapshot illustrates the disk-disk data 
transfer throughput (Mb/s) over time (seconds). 
 
 

6. RELATED WORK 
 

Moving large data sets over high-speed wide area networks has 
been recognized as a challenging task for many years. During 
iGrid 2002, various groups demonstrated prototypes of several 
different tools for high performance data transport [2, 3, 9, 16, 18, 
21].  

Since then, various new data transport protocols or related 
congestion control algorithms [8, 10, 12] have been designed and 
developed. Comparison between different protocols is now 
commonly regarded as a complicated topic, as each protocol has 
both advantages and disadvantages and no single protocol has 
proved superior [15].  

Since 1999, we have continued to develop a high performance 
data transport protocol based upon UDP: The first version was 
called SABUL [14].  SABUL used TCP as a control channel and 
was demonstrated at iGrid 2002.  The next version [12] was 
completely implemented in UDP in order to gain efficiency.  The 
current version [10] is called Composible-UDT and was used at 
iGrid 2005.  One of the advantages of UDT is that it is easy to 
deploy since it can be deployed at the application level and does 
not require changing the kernel. 

Perhaps the most widely deployed tool for bulk data transport is 
GridFTP [1], which uses parallel TCP to transfer data.  In 
contrast, UDT uses UDP to transport the data and adds reliability 
and congestion control.  We note that an upcoming release of 
GridFTP is expected to be integrated with a UDT driver enabling 
GridFTP to transfer data using UDT. 

Tools for high performance data transport that have been widely 
adopted have tended to provide a more convenient user interface 
than that provided by a raw socket API.  For this reason, UDT-
Gateway provides a HTTP interface and hides the details of the 
UDT protocol. 
We turn next to related work involving high volume data streams.  
Although streaming data mining is an area of active research, 
most of the work focuses on sensor networks and traditional 
Internet environments where the data transfer speed is much lower 
than what we saw during iGrid 2005.  

Various approaches have been proposed for histogram 
computation on streaming data [5, 6, 17, 20]. These methods 
basically fall into two classes. One is to use different strategies to 
dynamically split and merge the buckets. The other is to construct 
a summary structure on the data stream and build histograms from 
the summary structure. Our method belongs to the first class. As 
far as we are aware, our implementation of the BESH algorithm 
over UDT is the first time that histograms have been computed on 
streaming data at the speeds seen at iGrid 2005. 
More detailed analysis of histograms and streaming data 
processing is beyond the scope of this paper. Some general 
streaming data processing issues are discussed in [4, 7]. 
 

7. CONCLUSIONS 
 

In this paper, we have described two demonstrations at iGrid 2005 
that use data transport middleware and data mining middleware 
tools that we have developed. 
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For this first demonstration, we used the UDT-Gateway file 
transfer utility to transfer astronomical data from the iGrid 2005 
conference to Korea. We transferred over 797 GB of data at a 
mean rate of 1027 Mb/s. This was the first time that we are aware 
of that astronomical data of this size has been transported across 
the Pacific. 

For the second demonstration, we computed histograms on four 
high volume data flows that were streamed from Chicago, Korea, 
and Japan to the iGrid conference. We used an algorithm we 
designed and implemented called BESH. The average processing 
rate was about 8 Gb/s, with a peak speed of 14 Gb/s. This is one 
of the highest rates at which histograms have been computed on 
data distributed around the world that we are aware of. 

Both applications were built over Composibile-UDT [10], a recent 
implementation of the UDT protocol that is composible in the 
sense that different congestion control algorithms can be easily 
implemented. 

Finally, both of these demonstrations show the practicality of 
building useful, distributed data intensive applications using 
UDT-enabled middleware. 
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