
Hopf-algebraic structure of combinatorial
objects and differential operators

Robert Grossman∗

University of Illinois at Chicago

Richard G. Larson†

University of Illinois at Chicago

October 7, 1990

This is a draft of a paper which later appeared in the Israel Journal
Mathematics, Vol. 72, 1990, pp. 109-117.

In this paper we describe a Hopf-algebraic structure on a vector space
which has as basis a family of trees, and survey some applications of this
structure to combinatorics in Section 1, and to differential operators in Sec-
tion 2. In Section 3 we indicate some possible future directions for this work.

Much of the material discussed in this paper is work-in-progress. We
describe many questions and give some answers.

1 Hopf-algebraic structure of trees and com-

binatorics

We will describe a Hopf-algebraic structure imposed on the vector space
spanned by the set of equivalence classes of finite rooted trees, and indicate
how this structure can be used to give proofs of classical combinatorial theo-
rems, and how it can be applied in the calculus of differential operators. The
coalgebra structure we define on this space is very similar to the coalgebra
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structure defined in [9]. However, the coalgebra structure defined there was
defined for individual combinatorial objects, rather than for a class of objects
such as the family of rooted trees. Other applications of Hopf algebras to
combinatorics can be found in [12].

Throughout this paper, k will denote a field of characteristic 0 such as
the real numbers or the complex numbers.

By a tree we will mean a finite rooted tree. Let T be the set of finite
rooted trees, and let k{T } be the k-vector space which has T as a basis. To
avoid set-theoretic difficulties, we constrain the nodes of our trees to lie in
some fixed infinite set, and require that all the nodes of a tree be distinct
elements of this set. We will identify equivalent trees.

We first define the coalgebra structure on k{T }. If t ∈ T is a tree whose
root has children s1, . . . , sr, the coproduct ∆(t) is the sum of the 2r terms
t1 ⊗ t2, where the children of the root of t1 and the children of the root of t2
range over all 2r possible partitions of the children of the root of t into two
subsets. The map ε which sends the trivial tree to 1 and every other tree
to 0 is a counit for this coproduct. It is immediate that comultiplication is
cocommutative.

We next define the algebra structure on k{T }. Suppose that t1, t2 ∈ T
are trees. Let t′1 be a tree equivalent to t1, whose nodes are all different from
the nodes of t2, and let s1, . . . , sr be the children of the root of t′1. If t2
has n+ 1 nodes (counting the root), there are (n+ 1)r ways to attach the r
subtrees of t1 which have s1, . . . , sr as roots to the tree t2 by making each
si the child of some node of t2. The product t1t2 is defined to be the sum
of these (n+ 1)r trees. It can be shown that this product is associative, and
that the trivial tree consisting only of the root is a right and left unit for this
product. It can also be shown that the maps defining the coalgebra structure
are algebra homomorphisms, so that k{T } is a bialgebra. For details, see [3].

The bialgebra k{T } is graded: k{T }n has as basis all trees with n + 1
nodes. Because the bialgebra k{T } is graded connected, it is a Hopf algebra.
We summarize the above discussion in the following theorem.

Theorem 1 The vector space k{T } with basis all equivalence classes of finite
rooted trees is a cocommutative graded connected Hopf algebra.

An important feature of the structure of cocommutative Hopf algebras
over a field of characteristic 0 is the space of primitive elements. If A is a
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Hopf algebra, then the primitive elements of A are defined by

P (A) = { a ∈ A | ∆(a) = 1⊗ a+ a⊗ 1 }.

It can be shown that P (A) is a Lie subalgebra of A−.
Denote the universal enveloping algebra of the Lie algebra L by U(L).
Two important theorems concerning the structure of cocommutative graded

connected Hopf algebras are the following.

Theorem 2 (Milnor-Moore) Let A be a cocommutative graded connected
Hopf algebra. Then

A ∼= U(P (A))

as Hopf algebras.

Theorem 3 (Poincaré-Birkhoff-Witt) Let L be a Lie algebra with or-
dered basis x1, . . . , xn, . . . . Then

{xe1
i1 · · ·x

et
it | i1 < · · · < it; 0 < ek }

is a basis for U(L).

See [10, page 244] or [14, page 274] for a proof of Theorem 2; see [8,
page 159] for a proof of Theorem 3.

A natural question is to find a basis for P (k{T }). The answer is given
by the following proposition.

Proposition 4 The set of all trees whose root has exactly one child is a basis
for P (k{T }).

The proof of this proposition is straightforward.
Observing that there is a bijection between trees whose root has one

child, and trees with one fewer node, gotten by deleting the root, we get the
following immediate consequence.

Corollary 5

dimP (k{T })n = dim k{T }n−1

Putting together Theorems 1, 2, 3, and Corollary 5, and expressing the
resulting recurrence relation on dim k{T }n in terms of generating functions,
we get the following classical theorem on the number of rooted trees.
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Theorem 6 (Cayley 1857) Let an be the number of rooted trees with n
nodes. Then ∞∑

n=1

anz
n = z

∞∏
n=1

1

(1− zn)an
.

Other kinds of families of trees give other Hopf algebras. For example, let
OT be the family of finite rooted ordered trees. (By an ordered tree we mean
one in which the children of each node are linearly ordered.) Let k{OT } be
the k-vector space with basis OT . Then k{OT } is a cocommutative Hopf
algebra, and

k{OT } ∼= k<OT 1>,

the free associative algebra generated by OT 1, the set of ordered trees whose
root has exactly one child. Using the structure of this Hopf algebra, we get
a Hopf-algebraic proof of a formula for the number of ordered rooted trees
discovered by Catalan [2] in 1838.

2 Hopf-algebraic structure of trees and dif-

ferential operators

In this section we discuss an extension of the notion of tree, and its applica-
tion to the study of differential operators.

Let {E1, . . . , EM} be a finite set of formal symbols. A labeled rooted tree
is a finite rooted tree such that each node other than the root is labeled using
an element from {E1, . . . , EM}. Note that a label may be used more than
once. We denote the set of all labeled rooted trees labeled with {E1, . . . ,
EM} by LT (E1, . . . , EM), and the k-vector space with this set as basis by
k{LT (E1, . . . , EM)}. As in Section 1, we can make k{LT (E1, . . . , EM)}
into a cocommutative graded connected Hopf algebra.

Now consider the situation where the Ei are not formal symbols, but are
differential operators

Ei =
N∑

j=1

aj
i (x)

∂

∂xj

,

with aj
i (x) ∈ R. The algebra R is typically either the the algebra of poly-

nomial functions k[x1, . . . , xN ], the algebra of rational functions k(x1, . . . ,
xN), or the algebra of smooth functions C∞(kN , k). We define a map

ψ : k{LT (E1, . . . , EM)} → EndR
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as follows. Let t ∈ LT (E1, . . . , EM) have k+1 nodes, and let f ∈ R. Number
the nonroot nodes of t from 1 to k. We will make use of the summation indices
i1, . . . , ik in defining ψ(t)f . For the root, form the term

T0 =
∂rf

∂xil · · · ∂xil′

,

where the r children of the root are numbered l, . . . , l′. For a nonroot node
numbered j and labeled with Et, form the term

Tk =
∂ra

ij
t (x)

∂xil · · · ∂xil′

,

where the r children of this node are numbered l, . . . , l′. Then

ψ(t)f =
N∑

i1,...,ik=1

TkTk−1 · · ·T1T0.

It can be shown that this defines an action of the Hopf algebra k{LT (E1,
. . . , EM)} on R which is a measuring.

We now give some examples of applications of this construction.

Applications to symbolic algebra. An important type of computation
which is done in the study of differential operators is the computation of the
map

k<E1, . . . , EM>→ EndR,

where k<E1, . . . , EM> denotes the free associative algebra generated by the
differential operators E1, . . . , EM . The naive computation often leads to
cancellation in the computation. For example

(E1E2 − E2E1)f =
N∑

i1,i2=1

ai1
1

∂ai2
2

∂xi1

∂f

∂xi2

+ ai1
1 a

i2
2

∂2f

∂xi1∂xi2

− ai1
2

∂ai2
1

∂xi1

∂f

∂xi2

− ai1
2 a

i2
1

∂2f

∂xi1∂xi2

=
N∑

i1,i2=1

ai1
1

∂ai2
2

∂xi1

∂f

∂xi2

− ai1
2

∂ai2
1

∂xi1

∂f

∂xi2

(1)

Now consider the map k<E1, . . . , EM> → k{LT (E1, . . . , EM)} which is
defined by sending Ei to the tree with two nodes, in which the nonroot node
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is labeled with Ei. Then E1E2 − E2E1 maps to the difference of two trees,
in both of which the root has one child, labeled with either E2 or E1. The
child of the root in turn has one child, labeled with either E1 or E2. In other
words, the cancellation which occured in Equation (1) already occurs at the
tree level. We have a commutative diagram

k<E1, . . . , EM> → k{LT (E1, . . . , EM)}
↘ ↓

EndR

in which it is much more efficient to compute the composition of the right-
pointing arrow and the downward-pointing arrow, than it is to compute the
diagonal arrow directly. In some common cases, the improvement in efficiency
is exponential. A more detailed exposition of this material can be found in [4],
[7] and [6].

Solution of nonlinear systems of equations. Another application is
the local approximation of a differential equation by an equation which has
a symbolic solution. Suppose that

Fi =
N∑

j=1

bji (x)
∂

∂xj

,

where the bji (x) are not necessarily polynomial functions. Let

F (x, u) =
M∑
i=1

ui(t)Fi,

where t → ui(t) are fixed time varying functions. We are interested in the
differential equation y′(t) = F (y(t), u(t)). In applications, the ui typically
represent controls or other physical parameters describing the system.

It is rare that trajectories of the differential equation can be integrated
explicitly in closed form. There is however a simple case in which this is
true. Assume that for each i = 1, . . . , M , the functions bji (x) are polynomial
functions of the variables x1, . . . , xj−1. In this case trajectories of the differ-
ential equation can be written as explict functions involving quadrature of
the functions ui. Vector fields of this form arise when the Fi are homogenous
of degree 1 with respect to a grading of the underlying vector space kN .
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Therefore we want to find vector fields

Ei =
N∑

j=1

aj
i (x)

∂

∂xj

,

where the Ei are vector fields with polynomial coefficients homogenous of
degree 1 which approximate the Fi. Specifically, we want to find Ei such
that

Ei1 · · ·Eikx
β|x=0 = Fi1 · · ·Fikx

β|x=0, (2)

for all k ≤ r, for some fixed r. (Here xβ denotes the monomial xβ1
1 · · ·xβN

N .)
Note that the right-hand sides of Equations (2) are constants; the left-hand
sides are nonlinear polynomials in the coefficients of the polynomials aj

i (x).
By expressing the action of the Ei1 · · ·Eik using trees, we produce a sequence
of systems of nonlinear equations, such that each system involves more of
the coefficients of the polynomials aj

i (x), and such that if we solve one of the
systems and substitute its solutions into the next system in the sequence, we
get a linear system which we can either solve, or prove insoluble.

For a more detailed discussion of this material, see [5]

Runge-Kutta methods for solving differential equations. An impor-
tant area in numerical analysis is the study of higher order algorithms for the
solution of initial value problems for ordinary differential equations. Specifi-
cally, suppose we are solving the differential equation y′ = F (y), subject to
the initial condition y0 = y(0). Let

Y1 = y0

Y2 = y0 + hc2,1F (Y1)

Y3 = y0 + hc3,1F (Y1) + hc3,2F (Y2)
...

Yr = y0 + hcr,1F (Y1) + hcr,2F (Y2) + · · ·+ hcr,r−1F (Yr−1)

and let

y1 = y0 +
r∑

i=1

hbiF (Yi).

The problem is to find ci,j and bi to give the best approximation y1 ≈ y(h).
Here we can use trees to get equations which the ci,j and bi must satisfy to
get an approximation of sufficiently high degree.
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This application of trees has been studied extensively by Butcher in [1].
The approach taken there is somewhat different than ours: the existence of a
canonical basis for k{T } allows an identification of k{T }∗ with a completion
of k{T }, which Butcher makes use of.

In all of these examples there is a common theme: trees allow simple and
systematic management of calculations involving higher derivations, a fact
which was known to Cayley in the middle of the nineteenth century. We use
the Hopf algebra associated with a family of trees systematically to manage
calculations involving trees.

3 Future directions

In this section we discuss some areas for possible future research using the
Hopf-algebraic structure of families of trees.

Since k{LT (E1, . . . , EM)} acts on R, we have an R/k-bialgebra structure
on R ⊗ k{LT (E1, . . . , EM)}. This allows us to use the structure of R/k-
bialgebras (as presented in [11] and [13]) to investigate the action of trees as
higher derivations of R. The R/k-bialgebra structure we have described is
very dependent on the specific action on R, and on the fact that this action
is defined in terms of commuting differential operators ∂/∂x1, . . . , ∂/∂xN .
It is possible that the use of ordered trees rather than trees will eliminate
this problem.

There is a close connection between functionals on trees and formal power
series. More specifically, the coefficients an of the Taylor series expansion

f(x) =
∞∑

n=0

an

n!
xn

satisfy
dnf

dxn

∣∣∣∣∣
x=0

= an.

In a similar fashion, if E1, . . . , EM are noncommuting differential operators,
we can use the set of values Ei1 · · ·Eikf |x=0, or the set of values ψ(t)f |x=0,
for t ∈ LT (E1, . . . , EM). In this way we see that k{LT (E1, . . . , EM)}∗ is a
generalization of formal power series.
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